ECE/EEE 225
OBIJECT ORIENTED
PROGRAMMING THROUGH JAVA

UNIT - I:

OOPS CONCEPTS AND JAVA
PROGRAMMING

History of c, c++, java

“Cis a programming language which born at ‘AT &
T’s Bell Laboratories’” of USA in 1972. It was written
by Dennis Ritchie.

purpose: to design the UNIX operating system.

The committee formed by the American National
Standards Institute (ANSI) approved a version of C
in 1989 which is known as ANSI C.

ANSI C was then approved by the International
Standards Organization (ISO) in 1990.

It was named C because its predecessor was called

B which was developed by Ken Thompson of Bell
Labs.

“C++ was written by Bjarne Stroustrup at Bell Labs
during 1983-1985.

C++ is an extension of C. It is superset of C.

Bjarne Stroustrup added feature of OOP (Object
Oriented Programming) in C and formed what he
called ‘C with Classes’.

Java started to be developed in 1991 by James
Gosling from Sun Microsystems and his team.

The original name of Java is Oak. But it had to
change its original name because Oak had been
used by another programming language.

Java is viewed as a programming language to
design applications for the Internet.

1951 — Regional Assembly Language
1952 — Autocode

1954 — IFL (forerunner to LISF)

1955 — FLOW-MATIC (led to COBOL)
1957 — FORTRAN (first compiler)

1957 — COMTRAN (precursor to COBOL)
1958 — LISP

1958 —ALGOL 58

1959 — FACT (forerunner to COBOL)
1959 — COBOL

1967 — BCPL (forerunner to B)
1968 — Logo

1969 — B (forerunner to C)
1970 — Pascal

1970 — Forth

1972 - C

1959 — RPG
1962 — APL

1962 — Simula

1962 — SNOBOL

1963 — CPL (forerunner to C)
1964 — Speakeasy

1964 — BASIC

1964 — PL/I

1966 — JOSS

1966 - MUMPS

1967 — BCPL (forerunner to C)

1972 — Smalltalk

1972 — Prolog

1973 — ML

1975 — Scheme

1978 — SQL (a query language, later extended)

1980 — C++ (as C with classes, renamed in 1983) e 1986 — LabVIEW (Visual Programming Language)

1983 — Ada = 198G — Erlang

1984 — Commaon Lisp e 1967 — Perl

1984 — MATLAB « 1985 —Tcl

1984 — dBase lll, dBase Ill Plus (Clipper and FoxPro as FoxBASE. later e 1988 — Wolfram Language (as part of Mathematica, only got a separate
developing into Visual FoxPro) name in June 2013)

1985 — Eiffel s 1989 — FL (Backus)

1986 — Objective-C

e 1990 — Haskell « 1995 — Ruby
e 1990 — Python « 1995 — Ada 95

e 1991 — Visual Basic e 1995 — Java

e 1993 — Lua e 1995 — Delphi (Object Pascal)
e 1993 -R e 1995 — JavaScript

1994 — CLOS (part of ANSI Common Lisp) e 1995 — PHP
e 1997 — Rebol

Software

Software is a set of instructions or programs used to
operate computer and to execute specific tasks.

Two main categories of software:

System software: to run computer and to provide platform
for running applications.

Application software: to run user applications.

Programming languages: It is defined as a set of keywords
and syntaxes used to perform a specific task.

Two common types of low-level programming languages
are assembly language and machine language.

Low level programming languages:machine friendly,difficult
to understand.

https://techterms.com/definition/assembly_language
https://techterms.com/definition/machine_language

Machine language, or machine code, is the lowest
level of computer languages.

Assembly language is one step closer to a high-level
language than machine language. It includes
commands such as MOV (move), ADD (add), and SUB
(subtract).

Assembly language can be converted to the machine
language using an assembler.

High level languages: the code is not recognized
directly by the CPU. Instead, it must be compiled into
a low-level language.

High level programming languages:closed to human
languages.Programmer friendly,easy to
understand,debug and maintain

https://techterms.com/definition/assembler
https://techterms.com/definition/cpu
https://techterms.com/definition/compile

Programming paradigms

Programming paradigms are a way to
classify programming languages based on their
features.

Monolithic programming
Procedural programming
Structured programming
Object Oriented Programming

Monolithic programming

The Monolithic programming paradigm is the oldest. It
has the following characteristics.

In this programming paradigm, the whole program is
written in a single block.

It uses all data as global data which leads to data
Insecurity.

There are no flow control statements like if, switch, for,
and while statements in this paradigm.

We use the goto statement to jump from one
statement to another statement.

There is no concept of data types.

An example of a Monolithic programming paradigm
is Assembly language.

Ex: BASIC,ASSEMBLY

Procedural Programming Paradigm

The procedure-oriented programming paradigm is the
advanced paradigm of the monolithic paradigm. It has
the following characteristics.

— This paradigm introduces a modular programming concept
where a larger program is divided into smaller modules.

— |t provides the concept of code reusability.
— It is introduced with the concept of data types.

— The control of the program is transferred using unsafe goto
statement.

— In this paradigm, all the data is used as global data which
leads to data insecurity.

— Procedural programming languages are known as top-down
languages

— Examples of a procedural-oriented programming paradigm
is ALGOL, FORTRON,COBOL, PL/I and Ada.

Procedural Oriented
Programming

Global Data Global Data

Function | Function 2

Structured Programming Paradigm

The structured-oriented programming paradigm is the advanced paradigm
of a procedural-oriented paradigm. It has the following characteristics.

— This paradigm introduces a modular programming concept where a
larger program is divided into smaller modules.

— It provides the concept of code reusability.
— Itis introduced with the concept of data types.

— It provides flow control statements that provide more control to the
user.

— It follows all the concepts of procedural-oriented programming
paradigm but the data is defined as global data, and also local data to
the individual modules.

— User defined data types are introduced.

— In this paradigm, functions may transform data from one form to
another.

— Procedural programming languages are known as top-down
languages

— Examples of structured-oriented programming paradigm is C, visual
basic, PASCAL, etc.

Structured Programming Paradigm

Global Data Global Data

Function 1 Function 2 Function 3

Local Local Local
Data Data Data

Object-oriented Programming Paradigm

The object-oriented programming paradigm is the most popular. It has the
following characteristics.

In this paradigm, the whole program is created on the concept of objects.

In this paradigm, objects may communicate with each other through
function.

This paradigm mainly focuses on data rather than functionality.
In this paradigm, programs are divided into what are known as objects.
It follows the bottom-up flow of execution.

It introduces concepts like data abstraction, inheritance, and overloading
of functions and operators overloading.

In this paradigm, data is hidden and cannot be accessed by an external
function.

It has the concept of friend functions and virtual functions.
In this paradigm, everything belongs to objects.

Examples of object-oriented programming paradigm : C++, Java, CH,
Python, etc.

Object
Oriented Programming

l Functions | ! Functions |

N

l Functions |

OQOPs concepts

* Object-oriented programming uses objects in
programming.

 The main aim of OOP is to bind together the
data and the functions that operate on them
so that no other part of the code can access
this data except that function.

* So that security will be provided to the data.

https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#objects

Polymorphism

Inheritance

Encapsulation

Data
. Abstraction

Class

The class is a user-defined data type which defines its
properties(attributes or variables) and its behaviour
(functions or methods).

A class is grouping of objects having identical
properties, common behavior and shared
relationship.

It supports a template for creating objects which bind
code and data.

The class does not occupy any memory space.

The class is the only logical representation of the
data.

For example, Human being is a class. The body parts
of a human being are its properties, and the actions
performed by the body parts are known as functions.

Camry Camaro Benz

The syntax of declaring the class:

class student

{

//data members;
//Member functions

1

Caprice

Object
An object is the instance of the class. An object is a run-
time entity.
An object can represent a person, place or any other item.

An object can operate on both data members and
member functions.

When a class is defined, no memory is allocated but when
it is instantiated (i.e. an object is created) memory is
allocated.

The syntax for declaring the object:

Student s = new Student();

Object-oriented

programming
& E=n
Human] Name

Email Verify

Address Send mail

* Encapsulation: wrapping the data members and
member functions in a single unit. It binds the data
within a class, and no outside method can access
the data. If the data member is private, then the
member function can only access the data.

* This characteristic of data hiding provides greater
program security and avoids unintended data
corruption.

* Abstraction: Data abstraction refers to providing
only essential information about the data to the
outside world, hiding the background details or
implementation.

https://searchsqlserver.techtarget.com/definition/data-hiding
https://searchsqlserver.techtarget.com/definition/data-corruption
https://searchsqlserver.techtarget.com/definition/data-corruption

Consider a real-life example of encapsulation, in a company, there are
different sections like the accounts section, finance section, sales section
etc. The finance section handles all the financial transactions and keeps
records of all the data related to finance. Similarly, the sales section
handles all the sales-related activities and keeps records of all the sales.
Now there may arise a situation when for some reason an official from
the finance section needs all the data about sales in a particular month.
In this case, he is not allowed to directly access the data of the sales
section. He will first have to contact some other officer in the sales
section and then request him to give the particular data. This is what
encapsulation is. Here the data of the sales section and the employees
that can manipulate them are wrapped under a single name “sales
section”,

Consider a real-life example of a man driving a car. The man only knows
that pressing the accelerators will increase the speed of the car or
applying brakes will stop the car but he does not know about how on
pressing accelerator the speed is actually increasing, he does not know
about the inner mechanism of the car or the implementation of
accelerator, brakes etc in the car. This is what abstraction is.

Polymorphism: Polymorphism means multiple
forms. It means having more than one function
with the same function name but with different
functionalities.

Ex: A person at the same time can have different
characteristic. Like a man at the same time is a
father, an employee. So the same person posses
different behaviour in different situations. This is
called polymorphism.

Operator overloading(only in C++)
Function overloading

* Inheritance: The capability of a class to derive
properties and characteristics from another class
is called Inheritance. Inheritance is one of the
most important features of Object-Oriented
Programming.

— Sub Class: The class that inherits properties from
another class is called Sub class or Derived Class.

— Super Class: The class whose properties are inherited
by sub class is called Base Class or Super class.

— Reusability: Inheritance supports the concept of
“reusability”, i.e. when we want to create a new class
and there is already a class that includes some of the
code that we want, we can derive our new class from
the existing class. By doing this, we are reusing the
fields and methods of the existing class.

Animal
Base

o _—

|

Dog
Q

o’

Derived

Figure

atart

Area

Fermeter

Drrawy
Circle Rectangle
Eadius Width
Area Heaght
Fermeter Area
Drrawy Fermeter

Drrawy

square

Java Programming

History of java:
1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java

language project in June 1991. The small team of sun engineers called Green
Team.

2) Initially designed for small, embedded systems in electronic appliances like
set-top boxes.

3) Firstly, it was called "Greentalk" by James Gosling, and the file extension
was .gt.

4) After that, it was called Oak and was developed as a part of the Green
project.

5) Why Oak? Oak is a symbol of strength and chosen as a national tree of
many countries like the U.S.A., France, Germany, Romania, etc.

6) In 1995, Oak was renamed as "Java" because it was already a trademark
by Oak Technologies.

Java is an island of Indonesia where the first coffee was produced (called java
coffee). It is a kind of espresso bean. Java name was chosen by James
Gosling.

https://www.javatpoint.com/james-gosling-father-of-java
https://www.javatpoint.com/embedded-system-tutorial

The principles for creating Java programming were
"Simple, Robust, Portable, Platform-independent,
Secured, High Performance, Multithreaded,
Architecture Neutral, Object-Oriented, Interpreted,
and Dynamic".

initiated this project to develop a language for digital
devices such as set-top boxes, televisions, etc.
However, it was suited for internet programming.

Currently, Java is used in internet programming,
mobile devices, games, e-business solutions, etc.

Java SE 8 (LTS)

Java SE 11 (LTS)

1995

January 1996

February 1997

December 1998

May 2000

February 2002

September 2004

December 2006

July 2011

March 2014

Features of Java

Simple
Object-oriented

Distributed

Robust

Features of

Secure

pSystem independence

Portability

Interpreted

High Performance

Multithreaded

ynamic

e The features of Java are also known as
java buzzwords.

* Simple:

— Java is very easy to learn, and its syntax is simple, clean and easy to
understand. According to Sun, Java language is a simple
programming language because:

— Java syntax is based on C,C++ (so easier for programmers to learn it
after C++).

— Java has removed many complicated and rarely-used features, for
example, explicit pointers, operator overloading, etc.

— There is no need to remove unreferenced objects because there is an
Automatic Garbage Collection in Java.

* Object-oriented

— Java is an object-oriented programming language. Everything in Java
is an object. Object-oriented means we organize our software as a
combination of different types of objects that incorporates both data
and behavior.

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts

Platform Independent:

— A platform is the hardware or software environment in which a
program runs.

— Java is a write once, run anywhere language.

— Java code can be run on multiple platforms, for example, Windows,
Linux, Sun Solaris, Mac/0S, etc.

— Java code is compiled and converted into bytecode.

— This code is not understood by any platform, but only a virtual
platform called the Java Virtual Machine.

— This Virtual Machine resides in the RAM of your operating system.
When the Virtual Machine is fed with this bytecode, it identifies the
platform it is working on and converts the bytecode into the native
machine code.

Linux OS5

compile
Pﬂﬁgﬁ&ﬁm H BYTECODE Windows OS5

Mac OS5

Secure:

— Java program always runs in Java runtime environment with almost
null interaction with system OS, hence it is more secure.

— Java has no explicit pointer & Java Programs run inside a virtual
machine

— With Java, we can develop virus-free systems.

JA VA ng'lst‘llsne
Environment
Application “'®°*"

Application

JVM

oS

Robust:

— Robust means strong.
— It uses strong memory management.
— There is a lack of pointers that avoids security problems.

— There is automatic garbage collection in java which runs on the Java
Virtual Machine.

— There are exception handling and the type checking mechanism in Java.
So it provides compile time error checking and runtime checking.

Architecture-neutral:

— Compiler generates bytecodes, which have nothing to do with a
particular computer architecture, hence a Java program is easy to
intrepret on any machine.

Distributed:

— Java is distributed because it facilitates users to create distributed
applications in Java.

— RMI and EJB are used for creating distributed applications.

— This feature of Java makes us able to access files by calling the methods
from any machine on the internet by using TCP/IP protocols.

Multi-threaded:

— We can write Java programs that deal with many tasks at once by
defining multiple threads.

— Benefit of multithreading is that it utilizes same memory and other
resources to execute multiple threads at the same time.

— Ex:While typing, grammatical errors are checked along.

Dynamic:
— Java is a dynamic language.

— It supports dynamic loading of classes ie., classes are loaded on
demand.

— Java supports automatic memory management (garbage collection).

High Performance:

— Java architecture is designed to reduce overheads during run-time.

— The concept of multithreading in Java also increases the execution speed
of Java programs.

— Java is an interpreted language, so it will never be as fast as a compiled
language like C or C++.

— Java enables high performance with the use of just-in-time compiler.

Interpreted:

— Once the java program is created, it is compiled by Java Compiler. This
compiled code (Byte code) can be executed using Java Interpreter.

Java Comments

e Comments are mainly used to help programmers to understand
the code.

e proper use of comments makes maintenance easier and finding
bugs easily.

e Comments are ignored by the compiler while compiling a code.
These are optional.

* |nJava there are three types of comments:
1. Single —line comments.
2. Multi - line comments.
3. Documentation comments.

Single-line comments start with two forward slashes (//). we
use // for short comments.

Ex: single-line comment before a line of code:
// This is a comment
System.out.printin("Hello World");

Ex: single-line comment at the end of a line of code:

System.out.printin("Hello World"); // This is a
comment

e Multi-line comments start with /* and ends
with */. We use /* */ for longer comments.

* Any text between /* and */ will be ignored by
Java.

Ex:

/* The code below will print the words Hello World to the
screen, and it is amazing */

System.out.println("Hello World");

* Documentation Comments:

This type of comments are used generally when writing code for a
project/software package, since it helps to generate a
documentation page for reference, which can be used for getting
information about methods present, its parameters, etc.

The documentation comment is used to create documentation API.
To create documentation API, you need to use javadoc tool.

Ex:

/** The Calculator class provides methods to get addition and subtractio
n of given 2 numbers.*/

public class Calculator {

/** The add() method returns addition of given numbers.*/
public static int add(int a, int b){return a+b;}

/** The sub() method returns subtraction of given numbers.*/
public static int sub(int a, int b){return a-b;}

}

Create Documentation API by javadoc tool: javadoc Calculator.java

https://www.javatpoint.com/creating-api-document
https://www.javatpoint.com/creating-api-document
https://www.javatpoint.com/creating-api-document

Java tokens

* Atoken is the smallest element of a program that
is meaningful to the compiler.

* The Java compiler breaks the line of code into text
(words) is called Java tokens.

public class Demo

d

public static void main(String args[])

1
System.out.printin("javatpoint");
¥

b
In the above code snippet, public, class, Demo, {, static, void, main, (, String, args, [, 1,),
System, ., out, printin, javatpoint, etc. are the Java tokens. The Java compiler translates
these tokens into Java bytecode. Further, these bytecodes are executed inside the
interpreted Java environment.

https://www.javatpoint.com/java-bytecode
https://www.javatpoint.com/java-bytecode
https://www.javatpoint.com/java-bytecode

* Java tokens can be classified as follows:
— Keywords
— |dentifiers
— Constants
— Special Symbols/separators
— Operators
— Comments

* Keywords:

— Keywords are pre-defined or reserved words in a programming
language.

— Each keyword is meant to perform a specific function in a
program.

— keywords are referred names for a compiler, they can’t be used
as variable names because by doing so, we are trying to assign a
new meaning to the keyword which is not allowed.

— Keywords are always written in lower case.

Java language supports following keywords:

abstract
break
catch
const

do

enum
final

for

implements

int
module
open
private
public
short
super
this

to

try

volatile

assert
byte

char
continue
double
exports
finally
goto
import
interface
native
opens
protected
requires
static
switch
throw
transient
uses

while

boolean
case

class
default
else
extends
float

if
instanceof
long

new
package
provides
return
strictfp
synchronized
throws
transitive
void

with

* |dentifier:

— Identifiers are used to name a variable, constant, function,
class, and array.

— ldentifiers usually defined by the user.

— The identifier name must be different from the reserved
keywords.

— There are some rules to declare identifiers are:
 |dentifiers must begin with a letter, dollar sign or underscore.

* Apart from the first character, an identifier can have any
combination of characters.

* |dentifiers in Java are case sensitive.

 Java Identifiers can be of any length.

 |dentifier name cannot contain white spaces.

* Any identifier name must not begin with a digit but can contain
digits within.

* Most importantly, keywords can’t be used as identifiers in Java.

 Examples of valid and invalid identifiers :
* Smyvariable //correct

e variable //correct
e Variable //correct
e &variable //error

e 23identifier //error
e switch //error

e Literals:

— literal is a notation that represents a fixed value
(constant) in the source code.

— It can be categorized as an integer literal, string literal,
Boolean literal, etc.

— Java provides five types of literals are as follows:

Literal Tvpe
23 int
9.86 double
false, true boolean
K, 7, char
"javatpoint” String

null any reference type

e All values that we write in a program are literals.

* Each literal belongs to one of java’s 4 primitive
data types:int,double,boolean,char.

— integer literals: represents countable and discrete
guantities.

* decimal/octal/hexa-decimal

— double Literals: represents measurable quantities like
real numbers, fractions and numbers with decimal
places.

* Eore
— boolean Literals: represent for calculating truth values.

— char literal: It is a type of text literal. It represents one
character inside single quotes.

— String Literal:lt is a type of text literal.Enclosed in
double quotes.

Escape Sequences

* Each escape sequence is translated into a
character that prints in some special way.

Escape Sequences

Escape Sequence

Description

Wt

Insert a tab in the text at this point.

\b

Insert 2 backspace in the text at this point.

\n

Insert 2 newline in the text at this point.

\r

Insert a carriage return in the text at this point.

S

Insert a formfeed in the text at this point.

'..\r

Insert a single guote character in the text at this point.

Insert a double quote character in the text at this point.

A

Insert a backslash character in the text at this point.

public class Test {
public static void main(String[] args)

1
¥

System.out.println("Hi geek, welcome to ‘\"GeeksforGesks\".");
¥
Output: Hi geek, welcome to "GeeksforGeeks".

public class Test {
public static veid main(String[] args)

{
System.out.println("Good Morning\t Geeks! ");
h
¥
Good Morning Geeks!

public class Test {
public static veoid main(String[] args)

1
¥

System.out.println("Good Morning\bg Geeks! ");

¥

Good Morning Geeks!

public class Gfg {
public static veid main(String[] args)

1
h

System.out.println("\\- this is a backslash. ");

h

“W- this i1s a backslash.

Separators

The separators in Java is also known as punctuators.

have special meaning known to Java compiler and cannot be used for
any other purpose.

separator<=; |, | . [([)[{I}I[]]

Square Brackets []: It is used to define array elements. A pair of square
brackets represents the single-dimensional array, two pairs of square
brackets represent the two-dimensional array.

Parentheses (): It is used to call the functions and parsing the
parameters.

Curly Braces {}: The curly braces denote the starting and ending of a
code block.

Comma (,): It is used to separate two values, statements, and
parameters.

Assignment Operator (=): It is used to assign a variable and constant.

Semicolon (;): It is the symbol that can be found at end of the
statements. It separates the two statements.

Period (.): It separates the package name form the sub-packages and
class. It also separates a variable or method from a reference variable.

Operators

 Operators are the special symbols that tells the
compiler to perform a special operation.

e Java provides different types of operators that can be
classified according to the functionality they provide.

* There are eight types of operators in Java, are as
follows:

— Arithmetic Operators
— Assignment Operators
— Relational Operators
— Unary Operators

— Logical Operators

— Ternary Operators

— Bitwise Operators

— Shift Operators

Arithmetic +,.-./.%,%

Unary +4,--,1

Assignment =,+=,-=, %=, f=,6%=,6 "=
Relational ==,l=,<,> €=, >=

Logical &&, ||

Ternary (Condition) ? (Statementl) : (Statement2);
Bitwise &, |, ", w~

Shift <<, B>

Data types

* Data types are for identifying and assessing the
type of data. Java is rich in data types which
allows the programmer to select the appropriate
type needed to build variables of an application.

Data Types available in Java are:

1. Primary Data Type
Java supports eight primitive data types: byte, short, int, long, float, double, char and boolean.
These eight data types are further classified into four groups:
. Integer,

2. Relational Numbers(Floating point)
2. Characters
4. Boolean(Conditional).

2. Non-Primitive Data Types
Classes, Interface, Arrays, etc.

Data Type

T Ty

Primitive Non-Primitive
/\ —— String

Boolean Numeric Array
_ etc.

A
Character yggral\

Integer Floating-point

boolean ch;r byte short int long float double

Integer Types

Integer is the whole number without any fractional point. It can hold whole numbers such as 196, -52, 4036, etc.
Java supports four different types of integers, these are:

Type Contains Default Size Range
byte Signed integer 0 8 bit or =27 t0 27-1 or

1 byte -128 to 127
short Signed integer 0 16 bit or -215 to 215-1 or

2 bytes -32,768 to 32767

int Signed integer 0 32 bitor -231to 2311 0r
4 bytes -2147 483,648 to 2147 483,647

long Signed integer 0 64 bitor -263to 263-1or
8 bytes -9223,372,036,854,755,808 to 9223,372,036,854,755,807

Conditional

Boolean type is used to test a particular condition during program execution. Boolean variables can take either
true or false and is denoted by the keyword boolean and usually consumes one byte of storage.

Type Contains Default Size Range

boolean true or false false 1 bit true or false

Rational Numbers

It is used to hold whole numbers containing fractional part such as 36.74, or -23.95 (which are known as floating
point constants). There are two types of floating point storage in java. These are:

Type Contains Default Size Range
float IEEE 754 floating point 0.0f 32 bit or +1.4E-45 to
single-precision 4 bytes +3.40282347E+38F
double IEEE 754 floating point 0.0 64 bit or +439E-324 to
double-precision 8 bytes +1,7976931348623157E+308
Characters

It is used to store character constants in memory. Java provides a character data type called char whose type
consumes a size of two bytes but can hold only a single character.

Type Contains Default Size Range

char Unicode character \Wu0000 16 bits or 0 to 216-1 or
unsigned 2 bytes \u0000 to \uFFFF

class DataTypesq{

public static void main(String args[]){
byte byteVar = 5;
short shortVar = 26;

e

int intVar

= 38;

long longVar = 608;
float floatVar = 28;

double doubleVar = 20.123;

boolean booleanVar = true;

char charVar ="W';

System.
System.
System.
System.
System.
System.
System.
System.

out.
out.
out.
out.
out.
out.
out.

out.

println("Value
println("Value
println("Value
println("Value
println("Value
println("Value
println("Value
println("Value

of
of
of
of
of
of
of
of

byte Variable is
short Variable 1
int Variable is

long Variable is

5

+ byteVar);
" + shortVar);
+ intVar);

+ longVar);

float Variable is " + floatVar);

double Variable is " + doubleVar);

boolean Variable is

char Variable is

+ charVar);

+ booleanVar);

Program Output:

Value
Value
Value
Value
Value
Value
Value
Value

of
of
of
of
of
of
of
of

byte Variable is 5

short Variable is 20

int Variable is 38

long Variable is 68

float Variable is 208.8
double Variable is 28.123
boolean Variable is true

char Variable is W

Constants

* A constantis a variable whose value cannot change
once it has been assigned.

* To define a variable as a constant, we just need to
add the keyword “final” in front of the variable
declaration.

* Syntax:
final float pi = 3.14f;

Java will throw errors at compile time itself if we
change the value of constant variable.

Expressions

c A Java expression consists
of variables, operators, literals, and method calls.
* Examples:
int score;

score = 90;// Expression

Doublea =2.2, b =3.4, result;

result =a+ b - 3.4;//Expression

if (numberl == number2) //Expression
System.out.printIn("Number 1 is larger than number 2");

e Expression evaluation in Java is based upon the
following concepts:

— Operator precedence
— Associativity rules
— Type promotion rules

Operator Precedence

Operator precedence determines the order in
which the operators in an expression are
evaluated.

All the operators in Java are divided into several
groups and are assigned a precedence level.

Ex: 10—-2*5
Based on the operator precedence chart, * has
higher precedence than +. So, 2* 5 is evaluated

first which gives 10 and then 10 — 10 is evaluated
which gives 0.

Precedence

O'perator

Type

Associatvity

Paranfthesasz
Array subscnpt
"-.I-amber salection

I =ft to Fight

._,nar-. post-merement
._.narl. post-decremert

Fisht to laft

u:uarl. pre-lncrement
Unary pre-decrement
Unary plas

Unary mumus

Unaryv logical negation

TUnary bitwidsze complameant

n_-]'_'l.El". e cast

Right to laft

hultiplication
Chvisiom

Alodualus

Laft to right

11

Addiben
Zubtraction

Laft to right

10

Sitwize laft shitt
Bifmize nght shaft wath zign exdenzion
Bifoisze nEI:Lt shaft with zero exten=iom

Laft to right

mstancaod]

Relational less than

Felational less than or egual
Felational sreater than
Felational sraater than or equal
T‘-'pe comparison [(objacts only)

Laft to right

Relzticnal 1= egqual to
Felational 1= not aqual to

Laft to right

==l

&z

Bitoise AND)

Laft to right

Sitwlze exclusine LR,

Laft to night

Ll iy

Bifoize nelo=ive OF

Laft to right

4=

Logical AD

Laft to right

Logical OF

Left to nght

[]]

Tm'ua.r_'-' condibonal

Ejgm e

R

Assisnrnert

Addibon assignmeant
Subtraction azzisnment
Multiplication assigrment
Dhvcision assigmment
hModulus aszignment

Right to laft

Associativity Rules

If the expression contains two or more operators
from the same group then such ambiguities are solved
using the associativity rules.

When an expression contains operators from the

same group, associativity rules are applied to
determine which operation should be performed
first.

Ex: 10-6+2

The operators + and — both belong to the same group.
So, we have to check the associativity rules for
evaluating the above expression. Associativity rule for
+ and — group is left-to-right i.e, evaluate the
expression from left to right. So, 10-6=4 and 4+2= 6.

Type conversion

e Converting a value from one type to another type
(data type) is known as type conversion.

* Type conversion is of two types based on how the
conversion is performed:

— Implicit conversion (automatic conversion or coercion or
widening conversion)

— Explicit conversion (type casting or narrowing conversion.)

* Implicit Conversion:

— Implicit casting is performed to convert a lower data type
into a higher data type. It is also known as automatic type
promotion in Java.

— In this case both datatypes should be compatible with each
other.

* Explicit Conversion:

— Converting a higher datatype to a lower datatype is
known as narrowing. In this case the
casting/conversion is not done automatically, you need
to convert explicitly using the cast operator “()” .

— In this case both datatypes need not be compatible
with each other.

o - -8 -8 - 2 -

* Syntax tor type casting:

(destination-type) value

* in java the numeric data types are compatible
with each other but no automatic conversion is
supported from numeric type to char or boolean.
Also, char and boolean are not compatible with
each other.

* Ex for implicit type conversion:

intmylnt=9; o/p: 9

double myDouble = mylnt; // implicit convertion int to double o/p:9.0
inti=100; 100

long | = i; 100

floatf=1; 100.0

Ex for explicit type conversion:
double myDouble =9.78;

int myInt = (int) myDouble; // Manual casting:
doubletoint 9

float b = 3.0;

int a = (int) b; // converting a float value into inte
ger 3

double d =100.04; 100.04
long | = (long)d; 100
inti=(int)l; 100

Type Promotion in Expressions

* |n addition to assignment statements, type conversion can
occur in expressions also.

* An expression is a collection of variables, values, operators
and method calls which evaluate to a single value.

* Type promotion rules of Java for expressions are listed
below:

— All char, short and byte values are automatically promoted
to int type.

— |If at least one operand in an expression is a long type, then the
entire expression will be promoted to long.

— |If at least one operand in an expression is a float type, then the
entire expression will be promoted to float.

— |If at least one operand in an expression is a double type, then
the entire expression will be promoted to double.

— Boolean values cannot be converted to another type.

class Sample
i

-
LS

public static wvoid main(5tring[] args)

i
int 1 = 1068806
char c = 'z";
short s = 286
byte b = 128;
float f = 3.45f;
double d = 1._6789;
double result = ({f *b) + (1 /) - {d *¥ 5);
System.out.println(”Result = "+result);
T

Qutput of the above program is: Result = 8274 22

In the above program the expression is (f * b) + (i / ¢) — (d * s). In the first sub expression
(f * b), as one operand is float, the result of the expression will be a float. In the second
sub expression (i / c), char type will be promoted to int and the result of the expression
will be an int. In the third sub expression (d * s), as one operand is double, the result of
the expression is a double.

Type casting Iin expressions

* While evaluating expressions, the result is automatically updated to
larger data type of the operand.

e But if we store that result in any smaller data type it generates
compile time error, due to which we need to type cast the result.

EX:
float x = 3.5, y = 4.5; // the size of float variable is 4 byte.
int area; // the size of the int variable is 4 bytes.

area = (int) x * y; // after conversion the product converts into int
Ex:

byte b = 50;
b = (byte)(b * 2); //type casting int to byte

The differences between implicit casting and explicit
casting in Java are as follows:

1. Implicit type casting is done internally by java compiler
whereas, explicit type casting is done by the programmer.
Java compiler does not perform it automatically.

2. In explicit casting, cast operator is needed whereas, no
need for any operator in the case of implicit type casting.

3. If we perform explicit type casting in a program, we can
lose information or data but in the case of implicit type
casting, there is no loss of data.

4. Accuracy is not maintained in explicit type casting
whereas, there is no issue of accuracy in implicit type
conversion.

5. Implicit type conversion is safe but explicit type casting
is not safe.

Control statements

if(condition){ //code to be executed }
if(condition){ //code if condition is true }
else{ //code if condition is false }

if(condition1){ //code to be executed if conditionl is true }
else if(condition2){ //code to be executed if condition2 is true }

else if(condition3){ //code to be executed if condition3 is true }

else{ //code to be executed if all the conditions are false }
if(condition)
{
//code to be executed
if(condition){ //code to be executed }

switch(expression){
case valuel:

//code to be executed:;
break; //optional
case value2:

//code to be executed:;
break; //optional

default:
code to be executed if all cases are not match
ed;
} o o

inti=1; inti=1;
for(initialization;condition;incr/decr){ while(i<=10){ dof
//statement or code to be executed System.out.printin(i); System.out.printin(i);
} i+4; i+4;

} while(i<=10);

int arr[]={12,23,44,56,78};
//Printing array using for-each loop
for(int i:arr){
System.out.printIn(i);

}

Java Labeled For Loop:

We can have a name of each Java for loop. To do so, we use label before the for loop. It is
useful if we have nested for loop so that we can break/continue specific for loop.

Usually, break and continue keywords breaks/continues the innermost for loop only.

aa:
for(int i=1;i<=3;i++){
bb:
for(int j=1;j<=3;j++){
if(i==2&&j==2){
break aa;

}

System.out.printin(i+" "+j);

}

Infinite for loop Infinite while loop
for(;;){ while(true){
//code to be executed System.out.printIn("infinitive while loop");

}

} do{
//code to be executed
while(true);

Break:
for(int i=1;i<=10;i++){
if(i==5){
//breaking the loop
break;

}

System.out.printin(i);

}

Continue:
for(int i=1;i<=10;i++){
if(i==5){

//using continue statement
continue;//it will skip the rest statement

}
System.out.printin(i);
}
}

aa:
for(int i=1;i<=3;i++){
bb:
for(int j=1;j<=3;j++){
if(i==2&&j==2){
//using continue with label
continue aa;

}

System.out.println(i+" "+j);

}

First Java Program | Hello World Example

* Requirements to run the java program:

— Install the JDK, download the JDK from
oracle.com and install it.

— Set path of the jdk/bin directory.
— Create the java program

— Compile and run the java program

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

How to set Permanent Path of JDK in Windows

1) Go to MyComputer properties

Map network deve...
Drgonnect netwerk drive...

Creste shortout

2) Click on the advanced tab

IRESESRREEE

l

Seqech Conteod Pagel

4 y Control Paned v System and Security » System

Fle €2 View Teck Hep

Control Pane Mo 3y .
et o View basic infarmation about your computer

% Device Mansger Wadows edt-on
% Remete settingd

Windows 7 Ultimate
Copyraght © 2000 Microscft Corporaton, All nghts resatved,

Systen
PJ‘:J\;: m Windowt Expenence Index
Processen InteXR) Core{TM2 Duo CPU ©4600 @ 240Gz 240 GH:
Installed memory [RAMY 100 GB
Syttem type: 32-bit Opetating Syrtem
Pen and Touch No Pen or Towch Input is svadable for this Display
ks Computer name. doram, end workgroup settings
o Computer name: whed-PC W Crarge vettn
Wirdons U
ot Yerme Full compater name whad-#C
Perdormance Information and > ¥
Tooks Computer description:
Workgroup WORKGROUP -

3) Click on environment variables

:

F I BEENSEREES N
- Wedoesday

-

PR B v Cootrol Pantl » Satern and Securty b System

File Edt View Tools Help

C | Panei Home ’ : v
senrol Fane View had Systern Properties - “
| & Oevice Manager Windows Computer Narvw | Hardwarn | Advirced | Syse Prtecton | Remcte
% Remote settngs Windog You must be ogged on ae on Admresator to make mont of Sese changes ;
| % System protection Copyrig Sedoniunon
| % Advanced system sestings Vil eflects orocessdr schaduly], memory Lasge, and viusl memory
Uner Frodien . =
Deskdop settings msated 10 your igon
System i
et L 5‘!@_ -
Procesq R0 and Recavey |
P | Sten statip syden fpdue. ord debugunyg nfomaton
Systerd | [e ‘n'“ 1
e i S
oty 1
Action Center
Conw 4 ngs
Windows Update =
Fut cof) —— < *i '''' =T
Performunce isdfcemution and ¢ L O) LaCaned o L
Tocls =
Workgroup: OUe” -

4) Click on the new tab of user variables

sI0E Mytely . . BNy Comtrol Pamel 5 Syttern and Security » Systemn
! — /

| fue Edt Vew Tools Help

Searsty Contied Rame)

AN 2000)
Wiinoscday

! { 2
Contre! Panel Home View bag' System Properties X
mios i . =
% Device Manages '.‘.'.mmel-‘ wmlm Advarced | Sestem Protecton | Ramote
% Remote settings «'WJ‘ o) s be acomnd on as a0 Ador 10 makce must of Thees charges

| % Sysem protect] Snviconment Variables . A 2w
% Advanced syste | =
User varabies for suhad
Varobie Vol
| TEMP WEERPRDFALES VopDan (ool Temp
ne SWSTEPROFLE % opOets Local Teep

(hew J[&t |[osew

Sraten variables B
i Varatie Ve g
Camlone CriVindova prstessY'ond exe

B _NO_OST C... NO

o NIMEER OF 9., 3
Action Center oS \-.m.m) B 7. {
Windows Updafil AT e P ey P yEe
j [Newee | [€8t Delete
Peddoemance i —— —
‘ Tools
.

OOy LAR0e. el vtul meencry

|
| Settrgn.
e rioemgton
s
. i ":“’ I‘*ai 'l »
)
- s

5) Write the path in the variable name

e €2 Yiew Tocls Help

Control Panel Home .]
View basic/ " :
| Systern Properties

% Device Manager

i‘a’vn:!umcdveji p -
| Comonter Naw | Hardmarn | Advarced Syvem FrAecton | Resxte
VR & SELongs Wadows i | [l ' =k cton | :

LS S»ystm;u««bon' P .LL Youmas bt bocsd oo as of 10 make most of thase charges

& Advanced system Envronment Vanables

User visriabiles for sutad

6) Copy the path of bin folder

Oigange « inthade in hbeary = Share with v

W Favoettes
B Deshacp
Downiceds
2. Recent Places

.\ Mutic
o Prtures
H Videos

& Computer
& Local Dick (C:)
w Local Disk (Dx)
s DOCUMENTS (E)
o Local Disk (F)
Lk sottware (Gi)

N Netwerk

49 teins

Name

= appletvewer
.t
% beanreg.di
* | eicheck
=7 FemaConverter
Ll wdly
53 o
* 7 jaesigner
i jeve
=7 jreac
il Jevpdoc
R jreah
7 eeap
o jEaa-tmi
5 Jvew
L2 ey
7 jconsole
* | db

ihw

Sum

Osen

I PENESAREER

7) Paste path of bin folder in the variable value

IRESNSSNANN)

3 ¥
RSO (TR & o fan o ttemndsoaty » Spiem <]

fle ESt View Toch Help

Ceqren Contets Rgns 2

Control Paned Home

}d View basic/” -
t n N Systemn Propertes &
f7ova O 38 % Devce Marages Wintows estl | . ‘
¢ . Nama | ¢ Avorced | |
Remocte settings Wend ’{;.W, i Iw Syvtem Protecton | Remte

| & System protection £ aald L You mug be ecced o 00 ke moat of $wse charges
! % Advanced system Envronoent Varabies XS
l ——————————— New User Variable

User variabies for mésal 1 e —— — S

3@;
EEG

(2
L

a [bew.. || EdL,. || Deete
L
Al System variabies
Varotle Ve
:) Confpes CavnsoesiprstemIliond eor
’ A4S PE N0 _MOST L. MO
Action Center HNMER F P, 2
e :
Sy Windows Update 05 Wridons NT
Perfcrmance Infod [omewrci] [t]
@ Tooks e ———

—~a e

8) Click on ok button

o

RS F‘PQ - . 1 > Conteof Paned » System and Securty » Systemn
£ My N

Fle {da

il W Device hanager
| % Remcte setfings

View Tools Hep

Control Panel Home

Srarch Tonleol Ponet

INNENBRNNBEE

{ et
View b.wu.; 5 NG
Wirndows eéd |

Wodons | | | Comotac e | Hrdwe | Aovanced | Sy Prtocin | Famete

W System girotection ’
W Advanced system

e dlus
Action Cemter
Windows Update ||

9M«mm<dn'ol4
Tooks !

Now your permanent path is set. You can now execute any program of java from any drive.

= o8 e b Koo oo DAGEEROr (0 =aks Mot of these charges

e Usae. and vt mensdry

o 17 w m -
Voo —
Ci\Progras Fles Dava'pd 1.6.0_ 0%
NUESIROFRL %S MopDeta L os Terp
SNUEERFROFREW AopData Loos Temp

[v,) [e, Delete

- — A etiie et intmmad

Vae
C:ivrdoss sraten I ond exe
N0 35T C... MO
NMEER CEP.. 2
o5 Wiedows NT

J

Create the java program

To write the simple program, you need to open notepad
by start menu -> All Programs -> Accessories -> notepad.
write the simple program of java in notepad and saved it as

Simple.java.

‘

Semple paus - Notepad -] n‘

fz{: t@ Fcrrrut View Herz:
class simple{ . : .
public static void main(string args[]){

system.out.printin("Hello Java");

}
}

in?, Cai2

To compile and run this program, you need to open the

command prompt by start menu -> All Programs ->

Accessories -> command prompt.
L

L0

R
Microsoft Windows [Version 6.1./7600]
Copyright (c) 2009 Microsoft Corporation. All rights reserved
C:\Users\Sonoo>cd\
é:;tj C:\ocd new
- C:\new> javac Simple. java
& C:\new) java Simple
Hello Java
C: \new)
&)

To compile and run the above program, go to your
current directory first. my current directory is
c:\new. Write here:

To compile: javac Simple.java

When we compile Java program using javac tool,
java compiler converts the source code into byte

al.java .class files contan BY TECODE
code. e
f10;
; 20; ‘ al.class
aZ.java =z .
$OL }—)[COMPILER

a3.java

ﬁzo{ !

To execute: java Simple
Output: Hello Java

/|\

Parameters used in First Java Program

class Simple

{

public static void main(String args[])

{
System.out.printin("Hello Java");
J

J

* class keyword is used to declare a class in java.

* public keyword is an access modifier which
represents visibility. It means it is visible to all.

static is a keyword. If we declare any method as static,
it is known as the static method. The core advantage
of the static method is that there is no need to create
an object to invoke the static method. The main
method is executed by the JVM, so it doesn't require
to create an object to invoke the main method. So it
saves memory.

void is the return type of the method. It means it
doesn't return any value.

main represents the starting point of the program.
String[] args is used for command line argument.

System.out.printin() is used to print statement. Here,
System is a class, out is the object of PrintStream
class, printIn() is the method of PrintStream class.

Java Virtual Machine

e Java Virtual Machine (JVM) is an engine that provides
runtime environment to drive the Java Code or
applications. It converts Java bytecode into machines
language. However, Java compiler produces code for a

Virtual Machine known as Java Virtual Machine.

Loading and executing class files in the JVM

* JVM's main role is running Java applications. In

order to run Java applications, the JVM depends

on the Java class loader and a Java execution
engine.

* The Java class loader in the JVM

— Everything in Java is a class, and all Java applications
are built from classes.

— An application could consist of one class or thousands.

— The Java class loader is the part of the JVM that loads

classes into memory and makes them available for
execution.

— Every Java Virtual Machine includes a class loader.

https://www.javaworld.com/article/2077260/learn-java/learn-java-the-basics-of-java-class-loaders.html

* The execution engine in the JVM
— The execution engine is essential to the running JVM.

— Once the class loader has done its work of loading
classes, the JVM begins executing the code in each

Class.

— The execution engine is the JVM component that
handles this function.

— Executing code involves managing access to system
resources. The JVM execution engine stands between
the running program--with its demands for file,
network and memory resources--and the operating
system, which supplies those resources.

.class files contan BY TECODE

JIT code generator

'; 3-3’.2‘.1;557

—— -

Console input and output

 We have 3 ways for reading user's input from
console(text entry and display device) in Java:

1. Reading User's Input using Scanner class
2. Reading User's Input using Console class
3. Reading User's Input using BufferedReader class

 We have 2 ways for printing output to console in
Java:
1. write to console with System.out.printin
2. write to console with printf()

Reading User's Input using Scanner class

e Scanner class can be used to read input from the
user in the command line. available since Java 1.5.

SyntaX: Scanner scanner = new Scanner(System.in);

System.out.print{"What's your name? ");
String name = scanner.next();

System.out.print({"How old are you? ");
int age = scanner.nextInt();

System.out.print({"What is value of PI? ™);
float pi = scanner.nextFloat();

System.out.println{"Your name is: " + name);
System.out.println{"Your age i=: " + age);
System.out.println{"Your PI is: " + pi);

scanner.close();

Scanner scanner = new Scanner{new File("numbers.txt"));

The following import is needed for this example:

import java.util.Scanner;

Scanner also provides utility methods for reading data types other than String. These include:

scanner.nextByte();
scanner.nextShort();
scanner.nextInt();
scanner.nextLong();
scanner.nextFloat();
scanner.nextDouble() ;
scanner.nextBigInteger();

scanner.nextBigDecimal();

Biginteger class is used for mathematical operation which involves very big integer
calculations that are outside the limit of all available primitive data types.
For example factorial of 100 contains 158 digits

Reading User's Input using Console class

* The Console class was introduced in Java 1.6, and
it has been becoming a preferred way for reading
user’s input from the command line.

Console console = System.console();

String name = console.readlLine("What's your name? ");

String age = console.readlLine("How old are you? ");

String city = console.readlLine("Where do you liwve? ");
o

console.format("%s, a %= year-old man is living in %=", name, age, city);

What's your name? John
How old are you? 48
wWhere do you live? California

John, a 4@ year-old man is living in Californis

* it can be used for reading password-like input
without echoing the characters entered by the
usetr.

char[] password = conscle.readPassword{"Enter your password: ");

AR

Reading User's Input using BufferedReader class

* By wrapping the System.in (standard input
stream) in an InputStreamReader which is

wrapped in a BufferedReader, we can read input
from the user in the command line.

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

System.out.print("Enter your name: ");
String name = reader.readline();
System.out.println{"Your name is: " + name);

the readLine () method reads a line of text from the command line.

write to console with System.out.printin

System.out.println{

write to console with printf()

The printf(String format, Object... args) method takes an cutput string and multiple
parameters which are substituted in the given string to produce the formatted output content. This
formatted output is written in the console.

String name =

age = 38;

console.printf(s name, age};

My name is Lokesh and my age is 38

formatting output

e System.out.printf() method can be used to print
formatted output in java.

— printf() comes from the C programming language and
stands for print formatted.

— printf() uses java.util.Formatter
— System.out.printf(String format, String... arguments);
— the method expects a format and a vararg arguments.

2.1. Format Rules

Let's have a look at format string more closely. It consists of literals and format specifiers. Format spec
include flags, width, precision, and conversion characters in this sequence:

%[flags] [width] [.precision]conversion-character

Specifiers in the brackets are optional

Internally, printf() uses the java.util Formatter class to parse the format string and generate the output.
Additional format string options can be found in the Formatter Javadoc.

2.2. Conversion Characters

The conversion-characteris required and determines how the argument is formatted.
Conversion characters are only valid for certain data types. Here are some common ones.

e sformats strings.

 dformats decimal integers.

o fformats floating-point numbers.
o (formats date/time values.

2.3. Optional Modifiers

The [flags] define standard ways to modify the output and are most common for formatting integers a
floating-point numbers,

The [width] specifies the field width for outputting the argument. It represents the minimum number ¢
characters written to the output.

The [.precision] specifies the number of digits of precision when cutputting floating-point values.
Additionally, we can use it to define the length of a substring to extract from a String.

Boolean Formatting

To format Boolean values, we use the %b format. It works the following way: If the input value is true. the
output is true. Otherwise, the output is false.

So, if we do the following:

System.out.printT| g
System.out.printfi A f e);
System.out.printfi f
System.out.printT("%b%n ndom text

FALSE
TRUE
trus

Format Specifiers

 With printf(), you can print values such as numbers,
Strings, dates, etc. To let the method know what exactly
you're trying to print, you need to provide a format
specifier for each of the values.

There are many format specifiers we can use. Here are some common ones:

 7%c - Character

» %d - Decimal number (base 10)

» %e - Exponential floating-point number
o %f - Floating-point number

» %i - Integer (base 10)

* %0 - Octal number (base 8)

e %S - String

» %U - Unsigned decimal (integer) number
» %X - Hexadecimal number (base 16)

o« %t - Date/time

e 2N - Newline

System.out.printf("Hello, %s!™, "Michael Scott");

System.out.printf("Hello, %s!", "Jim");

System.out.printf("Hello, %s!™, "Dwight");

System.out.printf({"Hello,
System.out.printf{"Hello,
System.out.printf("Hello,

Hello, Michael Scott!
Hello, Jim!
Hello, Dwight!

System.out.printf("%10s\n", ack™); stack

Here, after the % character, we've passed a number and a format specifier. Specifically,
we want a String with 1e characters, followed by a newline. Since stack only contains
5 characters, 5 more are added as padding to "fill up" the String to the character target

System.out.printf("%-10s\n", "stack"); right-padding

Argument Index

If no argument index is provided, the arguments will simply follow the order of presence
in the method call:

This would result in:

First argument is 2, argument number is 1

However, after the % escape character and before the format specifier, we can add
another command. $n will specify the argument index:

em.out.printf("First argument is %2%d, second argument is %1%d", 2,

Here, 2¢ is located between % and d. 2¢ specifies that we'd like to attach the second
argument from the list of arguments to this specifier. Similarly, the 1% specifies that
we'd like to attach the first argument from the list to the other specifier.

Running this code results in:

First argument is 1, second argument is 2

class JavaFormatterl

{
public static void main(String args[])
i
int x = 186;
System.out.printf("Printing simple integer: x = %d\n", x);
Jf this will print it upto 2 decimal places
System.out.printf("Formatted with precison: PI = %.2f\n", Math.PI);
float n = 5.2F;
// automatically appends zero to the rightmost part of decimal
System.out.printf("Formatted to specific width: n = %.4f\n", n);
n = 2324435.3F;
// here number is formatted from right margin and occupies a
/f width of 28 characters
System.out.printf("Formatted to right margin: n = %20.4f\n", n);
I
h

Printing simple integer: x = 100

Formatted with precison: PI = 3.14

Formatted to specific width: n = 5.2000

Formatted to right margin: n = 2324435.25680

e String provides format() method and it can be
used to print formatted output in java.

— The java string format() method returns a formatted
string using the given locale, specified format
string and arguments.

— public static String format(String form, Object... args)

— form— format of the output string
args— It specifies the number of arguments for the
format string.It may be zero or more.

* Syntax:

Oormac

i
a0

-I-—i—\.. ST P W i ! P ‘:—a—— " T Pl I . E
foed — e - T - B T o - -— o o’ L] w " —
L = |~ = — f £ —

class Gfgl {
public static wvoid main(String args[])

1

String str = "GeeksforGeeks.";

[/ Concatenation of two strings
String gfgl = String.format("My Company name is %s", str);

J/ Output is given upto 8 decimal places
String str2 = String.format("My answer is %.8f", 47.65734);

[/ between "My answer is" and "47.65734088" there are 15 spaces
String str3 = String.format("My answer is ¥15.8f", 47.65734);

System.out.println(gfgl);
System.out.println(str2);
System.out.println(str3);

h

Output:

My Company name is GeeksforGeeks.
My answer is 47.65734000
My answer 1s 47 .65734000

public class FormatExample{

public static void main(String args[I{

String name="sonoo";

String sf1=String.format({"name is %s",name);

String sf2=String.format("value is %f",32.33434);

String sf3=String.format("value is %32.12",32.33434);//returns 12 char fractional part filling with 0

System.out.println(sfl);
System.out.printin(sf2);
System.out.println(sf3);

i

name 1s SONOO

value 1s 32.334340

value is 32.334348066000

Concatenation of Strings using format() method

class Gfg2 {
public static void main(String args[])

{
String strl = "GFG";
String str2 = "GeeksforGeeks";
//%1% represents first argument, %2$% second argument
String gfg2 = String.format("My Company name" +
" is: %1%s, %1%s and %2%s", strl, str2);
System.out.println(gfg2);
}
¥
Output:

My Company name is: GFG, GFG and GeeksforGeeks

Left padding using format() method

class Gfg3 {
public static wvoid main(String args[])

{
int num = /7644,
// OQutput is 3 zero's("08@™) + "7644",
[/ in total 7 digits
String gfg3 = String.format("%87d", num);
System.out.println(gfg3);

1

I
Qutput:

e 7844

public class FormatExample3 {
public static void main(String[] args) {
String strl = String.format("%d", 101);
String str2 = String.format("|%10d|", 101); // Specifying length of integer
'|%6-10d|", 101); // Left-justifying within the specified width
'|% d|”, 101);
String str5 = String.format("|%:010d|", 101); // Filling with zeroes

[
String str3 = String.format(
String strd = String.format(
(
System.out.printin(strl);
System.cut.println(str2);
str3);
strd);

System.out.println

System.out.println

(
(
(
System.out.println(str3);

1 | 101 |
| 101 |

| 1e1]
| popBERO101 |

Displaying String, int, hexadecimal, float, char, octal value
using format() method

public class JavaExample {

public static void main(String[] args) {

String
String
String
String
String
String

S5ystem.
S5ystem.
S5ystem.
S5ystem.
S5ystem.
System.

strl
str2
str3
str4
strs5
stro
out.

out.

out
out.
out.

out

= String.format("%d",
= String.format("%s",
= String.format("%f",
= String.format{"%x",
= String.format{"%c"”,
= String.format({"%o",

println{strl);
println{str2);

.println(stri);

println{str4);
println{strS5);

.println(stré);

15); // Integer value
"BeginnersBook.com™); // String
16.18); // Float value

189); // Hexadecimal value
"P'); [/ Char value

189); // Octal value

15
BeginnersBook. com
16. 100000

bd

P

275

Java String format() with Locale

The String | format() method also has another syntax if you have to work with the specified
locale. ,
String.format(Locale 1,
String format,
Object... args)

/f to use Locale
java.util.locale;

Main {
main(String[] args) {

number = 8652145;
String result;

// using the current locale
result = String.format("Number: %
System.out.println(result);

.d”, number);

// using the GERMAN locale as the first argument
result = String.format({Locale.GERMAN, "Number in German: %.d”. number):
System.out.println(result);

T Number: 8,652,145
Number in German: 8.652.145

Arrays in Java

An array is a group of like-typed variables that are referred to by a

common name. Arrays in Java work differently than they do in
C/C++.

important points about Java arrays:

— In Java all arrays are dynamically allocated.(discussed below)

— Since arrays are objects in Java, we can find their length using
the object property length.

— A Java array variable can also be declared like other variables
with [] after the data type.

— The variables in the array are ordered and each have an index
beginning from O.

— Java array can be also be used as a static field, a local variable or
a method parameter.

— The size of an array must be specified by an int or short value

AamnAdA o AAEr AN~

https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/marker-interface-java/
https://www.geeksforgeeks.org/serialization-in-java/

Types of Array In java

There are two types of array.

o Single Dimensional Array

o Multidimensional Array

40 55 63 17 22 68 89 97 89

Array Length=9
First Index=0
Last Index=8

<- Array Indices

Creating, Initializing one dimensional array

An array declaration has two components: the type and
the name.

the element type for the array determines what type of
data the array will hold.

Like an array of integers, we can also create an array of
other primitive data types like char, float, double, etc. or
user-defined data types (objects of a class).

The general form of a one-dimensional array declaration
IS

type var-name[]; // both are valid declarations

OR int intArray|[];

type[] var-name; or int[] intArray;

Creating Arrays

* You can create an array by using the new operator
with the following syntax —

dataType[] arrayRefVar;
arrayRefVar = new dataType[arraySize];

 The above statement does two things -
— |t creates an array using new dataType[arraySize].

— |t assigns the reference of the newly created array to the
variable arrayRefVar.

* Declaring an array variable, creating an array, and
assigning the reference of the array to the variable
can be combined in one statement:

dataType[] arrayRefVar = new dataType[arraySize];
dataTypel] arrayRefVar = {valueO, valuel, ..., valuek};

 The array elements are accessed through
the index. Array indices are 0-based; that is, they
start from O to arrayRefVar.length-1.

* Ex: double[] myList = new double[10];

Following picture represents array myList. Here, myList holds ten double values and the

indices are from 0 to 9.

myList

!

reference

Array reference

variable

Array clement at

index 5

myList]0|
myList|1]
myList|2]
myList|3]
myList|4]
myList|5]
myList|6]
myList|7]
myList|8]
myList|9]

5.6

45

33

13.2

4.0

3433 =

— Element value

34.0

45.45

99.993

11123

class Testarray{
public static void main(5tring args[]}{

int a[]=new int[5];//declaration and instantiation

a[0]=10;//initialization
a[l]=20;
a[2]=70;
a[3]=40;
a[4]=50:

//traversing array

for(int i=0;i<a.length;i++)//length is the property of array
System.out.printin(a[i]);

1

class Testarrayl{

public static void main(5tring args[]){

int a[]={33,3,4,5};//declaration, instantiation and initializatior
//printing array

for(int i=0;i<a.length;i++)//length is the property of array
System.out.printin(a[i]);

it

For each loop is used to traverse the complete array sequentially without using an index

variable.

The syntax of the for-each loop is given below:
for(data_type variable:array){
//body of the loop

h

public class TestArray {

public static wvoid main(String[] args) {
double[] mylList = {1.9, 2.9, 3.4, 3.5};

// Print all the array elements
for (double element: mylList) {
System.out.println{element);

public class MyExample
{

public static void main(5tring[] args)

a -

LTeatlng a 1nt ATray WiTO WIiTH wvalues

r a =

int[] number = mew int[] { 11, 22, 33, 44, 55, o&, 77,

System.cut.println("Print int Array:"):
for{int i = 0; i < number.length; i++)

L

System.out.println({"Values on index "+ i + ": " 4+ number[i]):

Creating a 5tring Array with with walues
String[] names = new String[] { "Java", "Goal"™,
"Java", "Concepta™}:
System.cut.println("Print String Arravy:");

for(int i = 0; i < namesa.length; i++)

F B 5 e L 1R s L L-18

T Li]

Learning™,

"Webzite®,

System.out.println{"Values on index "+ i + " + namea[i]):

St

L]
1L

Qutput: Print int Array:

int Array values on index 0: 11

int Array values on index 1. 22

int Array values on index 2: 33

int Array values on index 3. 44

int Array values on index 4: 55

int Array values on index 5. 66

int Array values on index 6. 77

int Array values on index 7. 88

int Array values on index 8: 99

Print String Array:

String Array values on index 0. Java
String Array values on index 1: Goal
String Array values on index 2: Learning
String Array values on index 3. Website
String Array values on index 4. for
String Array values on index 5. Java
String Array values on index 6. Concepts

Default values of the array

e After the array is declared, (before to initialize)
array will be filled every array index with default
values in memory locations.

e the default wvalue is 0 for numeric
type, null for String and false for boolean type.

class Array_Default{
public static void main(String args[]){

String[] names=new String[5];//array is declared, but not initilized
System.out.printin(names[0]);
System.out.printin(names[1]);

47

1])
System.out.printin(names[2])
System.out.printin(names(3])
System.out.printin(names([4]);

47

- .

- .

}

}
Output:

 null
 null
 null
 null
 null

Passing Array to a Method in Java

 We can pass the java array to method so that we
can reuse the same logic on any array.

class Testarray2{

//creating a method which receives an array as a parameter
static void min(int arr[]}{

int min=arr{0];

for(int i=1;i<arrlength;i++)

if(minz=arr[i])

min=arr[i];

System.out.printin(min);

}
Output: 3
public static void main(String args[]){
int a[]={33,3,4,5};//declaring and initializing an array
min(a);//passing array to method

i

Returning Array from the Method

 We can also return an array from the method in
Java.

class TestReturnArrayf

//creating method which returns an array
static int[] get(}{

return new int[]{10,20,50,20,60}

!

public static void main(5tring args[]){
//calling method which returns an array
int arr[]=get();

//printing the values of an array

for(int i=0;i<arr.length;i+ +)
System.out.printIn(arr[i]);

i

Anonymous Array in Java

* Java supports the feature of an anonymous array,

so you don't need to declare the array while
passing an array to the method.

public class TestAnonymousArray{

//creating a method which receives an array as a parameter
static void printArray(int arr[]}{

for(int i=0;i<arr.length;i++)

System.out.printin(arr[i]);

1

public static void main(5tring args[]){

printArray(new int[}{10,22,44,66});//passing anonymous array to method

i

108
22

66

Multidimensional Array in Java

* |In multidimentional arrays, data is stored in row
and column based index (also known as matrix
form).

Syntax to Declare Multidimensional Array in Java

dataType[][] arrayRefVar; (or)
dataType [J[JarrayRefVar; (or)
dataType arrayRefVar[][]; (or)
dataType [JarrayRefVar[];

Example to instantiate Multidimensional Array in Java

int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in Java

- s T F-—-"7 ™ "7/ """ ~"—"—"/ "

[R e T e e e B N S N e B |
- ~ ~" ~~ ~ ~ ~~~~ ™~~~

e el e e e e e e —

class Testarray3{

public static void main(String args[]){

//declaring and initializing 2D array

int arr[][]={{1,2,3}.{2,4,5}.{4.4,5}};

//printing 2D array

for(int i=0;i<3;i++){

for(int j=0;j<3;j++)]
System.out.print(arr[i][j]+" ");

i

System.out.printin();

h

1

Jagged Array in Java

* |f we are creating odd number of columnsina 2D
array, it is known as a jagged array. In other words,
it is an array of arrays with different number of
columns. class Testiaggedarmay(

public static void main(String[] args){
//declaring a 2D array with odd columns
int arr[][] = new int[3][];
arr[0] = new int[3];
arr[1] = new int[4];
arr[2] = new int[2];
/finitializing a jagged array
int count = O
for (int i=0; i<arr.length; i+ +)
for(int j=0; j<arr[i].length; j++)

arr[i][j] = count++;

//printing the data of a jagged array
for (int i=0; i<arr.length; i++){
for (int j=0; j<arr[il.length; j+ +){
System.out.print(arr[i]j]+" ")
i

System.out.printin{);//new line

Copying Arrays

e |ist2 = list1;
* This statement does not copy the contents of the

array referenced by listl to list2, but merely
copies the reference value from list1 to list2.

e After this statement, listl and list2 reference to
the same array.

Before the assignment After the assignment
l1st2 = hist | ; list2 = hstl;
listl - list]
Contents Contents
of hstl of hstl
hist2 list?
Contents Contents
of hst2 _ of hst2
Crarbage >

The array previously referenced by list2 is no longer referenced; it becomes garbage,
which will be automatically collected by the Java Virtual Machine.

You can use assignment statements to copy primitive data type variables, but not arrays.
Assigning one array variable to another variable actually copies one reference to another
and makes both variables point to the same memory location.

We use a loop or arraycopy() to copy arrays.

Using a loop:

int[] sourceArray = {2, 3, 1, 5, 10};
int[] targetArray = new int([sourcelArray.length];

for (int 1 = 0; i < sourceArrays.length; i++)
targetArray[i1] = sourceArray[i]:
The arraycopy method:

arraycopy (sourceArray, src pos, targetArray, tar pos, length);

Example:

System.arraycopy (sourcebrray, 0, targetArray, 0, sourcelArray.length);

The number of elements copied from socurcelArray 10 targetarray 18 indicated by length.
The arraycopy does not allocate memory space for the target array. The target array must
have already been created with 1ts memory space allocated.

After the copying take place, targetArray and socurceArray have the same content but
independent memory locations.

class TestArrayCopyDemo {
public static void main(String[] args) {

/fdeclaring a source array

char[] copyFrom = {'d’, 'e’, 'c’, 'a’, 'f, T, ‘&,
0, 'n’ 'al 't e, 'd)

//declaring a destination array

char[] copyToc = new char[7];

//copying array using System.arraycopy() method

System.arraycopy(copyFrom, 2, copyTo, 0, 7);

//printing the destination array

System.out.println(String.valueOf(copyTao));

Output: caffein

Addition of 2 Matrices
class Testarray5{
public static void main(String args[]){
//creating two matrices
int a[][1={{1,3,4}.{3.4,5}}
int b[][1={{1.3.4}.{3.4.5}};

//creating another matrix to store the sum of two matrices

int c[][[=new int[2][3];

//adding and printing addition of 2 matrices
for(int i=0;i<2;i++){

for(int j=0;j<3;j+ +){

clilfjI=alilfl+bgl:

System.out.print(c[i][j]1+" ");

1

System.out.printIn();//new line

h

1

public class MatrixMultiplicationExamplef . :
Multiplication of 2 Matrices

public static void main(String args[]){

//creating two matrices

int a[][1={{1,1,1}.{2.2,2},{3,3.3}};

int b[J[]={{1.1,1}.{2,2.2}.{3.3.3}};

//creating another matrix to store the multiplication of two matrices

int c[][]=new int[3][3]; //3 rows and 3 columns
ffmultiplying and printing multiplication of 2 matrices

for(int i=0;i<3;i++){

for(int j=0;j<3;j++){

L= 6 6 6
for(int k=0;k<3;k++)

{ 12 12 12
c[i][j]+=ali][k]*b[kI[]; 18 18 18

y//end of k loop

System.out.print(c[i][j1+" ") //printing matrix element
y/fend of | loop

System.out.printIn(};//new line

]
1

Reading array using Scanner class

import java.util.*;
class OnedimensionalScanner

{

public static void main(String args[])
{
int len;
Scanner sc=new Scanner(System.in);
System.out.printIn("Enter Array length : ");
len=sc.nextInt();
int a[]=new int[len];//declaration
System.out.print("Enter " + len + " Element to Store in Array :\n");
for(int i=0; i<len; i++)

{
a[i] = sc.nextlInt(); Enter Array length :
} 4
System.out.print("Elements in Array are :\n"); Enter 4 Element to Store in Array :
for(int i=0; i<len; i++)
{
System.out.print(afi] +" ");
}
} Elements in Array are :

} 1 2 3 4

Class and object

Java is an object-oriented programming language.

Everything in Java is associated with classes and
objects.

A class is a user defined blueprint or prototype
from which objects are created.

Class represents the set of properties or methods
that are common to all objects of one type.

Example: a car is an object. The car has attributes,
such as weight and color, and methods, such as
drive and brake.

Creating a class in java

 We can create a class in Java using the class
keyword.

* Class contains variables and methods.
* Syntax:
class classhame
{
variable declaration(class attributes);
method declaration;

Create a Class:
public class Main

int x = 5
Create an Object (for accessing the class attributes) :
In Java, an object is created from a class.

In Java, the new keyword is used to create new objects.

When we create an instance of the class by using the new keyword, it allocates

memory (heap) for the newly created object and also returns the reference of
that object.

You can access attributes by creating an object of the class, and by
using the dot syntax (.)

Syntax:

ClassName object = new ClassName();

Main myObj = new Main();

public class Main

1

int x = 5;

public static wvoid main(String[] args)

{
Main my0Obj = new Main();
System.out.println(myObj.x);

¥
h

Output: 5

Modify Attributes

public class Main {

int x;

public static wvoid main(S5tring[] args) {
Main my0bij = new Main();
System.out.println{myObj.x);
¥
I

Output: O

public class Main {

int x;

public static void main(S5tring[] args) {
Main my0Obj = new Main();
myObj.x = 48;
System.out.println(myObj.x);
1
t

Output: 40

public class Main {

int x = 18,

public static void main(String[] args) { Output: 25

Main myObj = new Main();

myObj.x = 25; // x is now 25

System.out.println{myObj.x);
'I.-.

J
If you don't want to override existing values, declare the attribute as final.

The final keyword is useful when you want a variable to always store the same value,
like PI (3.14159...).
.

public class Main
final int x = 1@;

public static wvoid main(String[] args) {

Main myObj = new Main();
myObj.x = 25; // will generate an error
System.out.println(myObij.x);

!

Main.java:6: error: cannot assign a value to final variable x

myObj.x = 25;

Y

1 error

Multiple objects

If you create multiple objects of one class, you can change the attribute
values in one object, without affecting the attribute values in the other.

public class Main {
int x = 5;

public static void main(String[] args) {
Main my0Objl = new Main();
Main my0Obj2 = new Main();
System.out.println(myObijl.x);
System.out.println(my0Obij2.x);

j
h

Output: 5

public class Main {
int x = 5;

public static void main(String[] args) {
Main my0Objl = new Main();
Main my0Obj2 = new Main();
myObjl.x = 25;
System.out.println{myObijl.x);
System.out.println(myObij2.x);

Multiple Attributes

* We can specify as many attributes as we want in a
class.

public class Main {

String name = "Rama”;
int age = 18;

public static void main(String[] args) {
Main myObj = new Main();
System.out.println{"Name: " + myObj.name);
System.out.println("Age: " + myObj.age);

| S

Using Multiple Classes

* You can also create an object of a class and access
it in another class.

 This is often used for better organization of
classes. one class has all the attributes and
methods, while the other «class holds
the main() method.

 the name of the java file should match the class
name.

public class Main

public static void main(5tring args
Main myObj = new Main
System.out.println(my0bj.x

Save the above program with Second.java because the main method is available at
Second class.

C:\Users\Your Name>javac 5Second.java

C:\Users'Your Name>java Second

Class methods

public class Examplel

{

void show()

{
System.out.printin("Welcome to ANU");

}

public static void main(String[] args)

{

//creating an object using new keyword
Examplel obj = new Examplel();
//invoking method using the object
obj.show();

}

}
Output: Welcome to ANU

initialize object

 There are 3 ways to initialize object in Java.
— By reference variable
— By method
— By constructor

Initialization through reference

* |nitializing an object means storing data into the
object.

class Student]
int id;
5tring name;
1
class TestStudent2]
public static void main(5tring args[]){
Student sl=new Student();
s1id=101;
sl.name="5cnoo";
System.out.printin(sl.d+" "+sl.name});//printing members with a white space
1
1

Initialization through method

In this, we create methods for initialising the objects.

class Student{
int rollno;
String name;
void insertRecord(int r, String n){
rollno=r;
name=n;
b
void displaylnformation(){System.out.printin{rollno+" "+name);}
}
class TestStudent4{
public static void main(String args[]){
Student s1=new Student(); 111 I{E[‘"En

Student s2=new Student();

222 Aryan

slinsertRecord(111,"Karan™);
s2.insertRecord(222,"Aryan”);
s1l.displayInformation();

s2.displayInfermation();

h

Stack Memory Heap Memory

class Employee{
int id;
String name;
float salary;
void insert(int i, String n, float s) {
id=i;
name=n;
salary=s;
}
void display(){System.out.printIn(id+" "+name+
}
public class TestEmployee {
public static void main(String[] args) {
Employee el=new Employee();
Employee e2=new Employee();
Employee e3=new Employee();
el.insert(101,"ajeet",45000);
e2.insert(102,"irfan",25000);
e3.insert(103,"nakul",55000); 182 irfan 25000.0
el.display(); 103 nakul 55000.0
e2.display();
e3.display();

+salary);}

181 ajeet 45008.0

class Rectanglef
int length;
int width;
void insert(int |, int w){
length=I;
width=w;
j
void calculateArea(){System.out.printin{length*width);}
h
class TestRectanglel{
public static void main(5tring args[]){

Rectangle rL=new Rectangle();

Rectangle rZ=new Rectangle();
rl.insert(11,5):

rZ.nsert(3,15):
rl.calculateArea();

r2.calculateAreal);

class Employee{
int id;
5tring name:
float salary:
void insertl(int i, 5tring n, float s} {
id=i;
name=n;
salary=s:
¥
void display(}{System.out.printin(id+" "+name+" "+salary):}
h

public class TestEmployee {

public static void main(String[] args) {

181 ajeet 45680.8

Employee el=new Employee();
162 irfan 25600.0

163 nakul 55868.@

Employee e2=new Employee():

Employee e3=new Employee();
el.insert(101,"ajest" . 45000);
eZ.insert(102,"irfan",25000);
ed.insert(103," nakul”,55000);
el.display():

e.display()

ed.display(l

Constructors in java

A constructor in Java is a special method that is used
to initializes the newly created object before it is used.

The constructor is called when an object of a class is
created.

It can be used to set initial values for object attributes.

It has the same name as its class and is syntactically
similar to a method.

All classes have constructors, whether you define one
or not, because Java automatically provides a default
constructor that initializes all member variables to
Zero.

However, once you define your own constructor, the
default constructor is no longer used.

Rules for creating Java constructor

There are two rules defined for the constructor.

1. Constructor name must be the same as i1ts class name
2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Java Default Constructor

A constructor is called "Default Constructor" when
it doesn't have any parameter.

* The default constructor is used to provide the
default values to the object like O, null, etc.,
depending on the type.

class Student3

int id;

5tring name;

//method to display the value of id and name

void display(){System.out.printin(id+" "+name]);}

public static void main(5tring args[])}{
ffcreating objecis

Student3 sl=new Student3();
Student3 sZ2=new Student3();
f/displaying values of the object

sl.display();
s2.display();
j
j

g null
g null

public class Main {

int x; // Create a class attribute

S/ Create a elass constructor for the Main class
public Main() {
x =5; // Set the initial wvalue for the class attribute x

public static void main(String[] args) {
Main myObj = new Main(); // Create an object of class Main (This will call the censtructor)

System.out.println(myObj.x); // Print the value of x

[/ Outputs 5

Java Parameterized Constructor

e A constructor which has a specific number of
parameters is called a parameterized constructor.

 The parameterized constructor is used to provide
different values to distinct objects.

class Studentdq
int id;
5tring name;
//creating a parameterized constructor

Studentd{int 1.5tring n){

//method to display the values
void display(}{System.out.printin(id+" "+name);}

111 Karan

public static void main(5tring args[]){ 222 Aryan

//creating objects and passing values

Studentd s1 = new Studentd(111,"Karan™);
Studentd 52 = new Studentd{222,"Aryan");
//calling method to display the values of object
sl.display():

s2.display();

h

Constructor Overloading - Multiple
Constructors for a Java Class

In Java, a constructor is just like a method but
without return type. It can also be overloaded like

Java methods.

Constructor overloading in Java is a technique of
having more than one constructor with different

parameter lists.

They are arranged in a way that each constructor
performs a different task.

They are differentiated by the compiler by the
number of parameters in the list and their types.

https://www.javatpoint.com/method-overloading-in-java

class Student5q
int id;
string name;
int age;
//creating two arg constructor
Student5(int 1.5tring n){
id = i;
name = n;
h
//creating three arg constructor
Student5(int i.5tring n.int a){
id=1i;

name = n:

111 Karan 8

age=a:

} 222 Aryan 25

void display(}{system.out.printin{id+" "+name+" "+age);}

public static void main(5tring args[]){
Student5 s1 = new Student5(111,"Karan™);
Studentd 52 = new StudentS(222,"Aryan",25);
sl.display();

s2.display();

h

There are many differences between constructors and methods. They are given below.

A constructor is used to initialize the state of an object. A method is used to expose the behavior of
an object.

A constructor must not have a return type. A method must have a return type.

The constructor is invoked implicitly. The method is invoked explicitly.

The lava compiler provides a default constructor if you don't have | The method i1s not provided by the compiler

any constructor in a class. In any case.

The constructor name must be same as the class name. The method name may or may not be same

as the class name.

Java static keyword

The static keyword in Java is used for memory management
mainly. We can apply static keyword with variables, methods, blocks
and nested classes. The static keyword belongs to the class than an

instance of the class.

The static can be:

1. Variable (also known as a class variable)
2. Method (also known as a class method)
3. Block

4. Nested class

1) Java static variable

If you declare any variable as static, it is known as a

static variable.

© The static variable can be used to refer to the
common property of all objects (which is not
unique for each object), for example, the
company name of employees, college name of
students, etc.

o The static variable gets memory only once in the

class area at the time of class loading.

Advantages of static variable

It makes your program memory efficient (i.e., it saves memory)

Understanding the problem without static variable

class Student{
int rollno;
String name;

String college="ITS";

Suppose there are 500 students in my college, now all instance data members will get memory each time when the
object is created. All students have its unique rollno and name, so instance data member is good in such case. Here,

“college” refers to the common property of all objects. If we make it static, this field will get the memory only once.

//Java Program to demonstrate the use of static variable
class Student{
int rollno;//instance variable
String name;
static String college ="ITS";//static variable
//constructor

Student(int r, String n){

rollno =r;
name = n;
; Output:

//method to display the values

void display (){System.out.printin(rollno+" "+name+" "+college);} 111 Karan ITS

} 222 Aryan ITS
//Test class to show the values of objects

public class TestStaticVariable1{

public static void main(String args[]){

Student s1 = new Student(111,"Karan");

Student s2 = new Student(222,"Aryan");

//we can change the college of all objects by the single line of code
//Student.college="BBDIT";

s1.display();

s.display();

}

! Class Area

Heap Memory

//Java Program to illustrate the use of static variable which
//is shared with all objects.
class Counter2{

static int count=0;//will get memory only once and retain its value

Counter2(){
count++;//incrementing the value of static variable

System.out.printin(count);

}

Output:

public static void main(String args[]){
//creating objects

Counter2 c1=new Counter2();
Counter2 c2=new Counter2();

Counter2 c3=new Counter2();

}
}

2) Java static method

If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than the object of a class.
o A static method can be invoked without the need for creating an instance of a class.

o A static method can access static data member and can change the value of it.

//Java Program to demonstrate the use of a static method.
class Student{

int rollno;

String name;

static String college = "ITS";

//static method to change the value of static variable

static void change(){

college = "BBDIT",;

}

//constructor to initialize the variable

Student(int r, String n){

rollno =r;
name = n;

//method to display values

void display(){System.out.printin(rollno+" "+name+" "+college);}

//Test class to create and display the values of object
public class TestStaticMethod{
public static void main(String args[]){
Student.change();//calling change method
//creating objects
Student s1 = new Student(111,"Karan");
Student s2 = new Student(222,"Aryan"”);
Student s3 = new Student(333,"Sonoo");
//calling display method
s1.display();
s2.display();
s3.display();

}

Output:111 Karan BBDIT

222 Aryan BBDIT
333 Sonoo BBDIT

Another example of a static method that performs a normal calculation
//Java Program to get the cube of a given number using the static method

class Calculate{
static int cube(int x){

return x*x*x;

}

public static void main(String args[]){
int result=Calculate.cube(5);

System.out.println(result);

}
}

Output:125

Restrictions for the static method

There are two main restrictions for the static method. They are:
1. The static method can not use non static data member or call non-static method directly.

2. this and super cannot be used in static context.

class A{
int a=40;//non static
public static void main(String args[]){

System.out.printin(a);

}
}

3) Java static block

o |s used to initialize the static data member.

o |tis executed before the main method at the time of classloading.

Example of static block

class A2
static{System.out.printin("static block is invoked");}
public static void main(String args[]){
System.out.printin("Hello main®);
}

}

Output:static block is invoked
Hello main

class Test{
static int1 = 10;
static int j;
static{
System.out.println("Initializing the Static Variable using Static Block ...");
j=1%5;
}
}

class Main{
public static void main(String args|[]){
System.out.println("Value of i is: " + Test.i);
System.out.println("Value of j is: " + Test.j);

}

jarvis@iamrjg846; ~/Desktop
File Edit View Search Terminal Help

of] 1s

jarvis@iamrj846:

Static Nested Classes in Java

In Java, you can use static keywords for nested classes as well. However, it isn't possible to use the
static keyword for outer classes or top-level classes. Please note that when you use nested classes,
they don't need any sort of reference for outer classes in Java. Also, a nested static class cannot
access the members of the outer class that are non-static. Let's consider the below example for better
understanding.

class Test{
static int1 = 10;
static class NestedTest{
public void printer(){
System.out.println("The value of i is: " + i);

}
}

class Main{
public static void main(String args[]){
Test.NestedTest t = new Test.NestedTest();
t.printer();
}

} File Edit View Search Terminal Help
jarvis@iamrj846: ¢

jarvis@iamrj846: ~/Desktop

jarvis@iamrj846:

The value of 1 1is:

jarvis@iamrj846:

Let’s consider a final example that uses all the types of static members that were discussed above.
class Test{
//Static variable
static int 1;
static int j;
//Multiple Static Blocks
static{
System.out.println("Initializing the value of i");
i=20;
}
static{
System.out.println("Initializing the value of j");
j=1%30;
}
//Static Method
public static void display(){ File Edit View Search Terminal Help
System.out.println("The value of 11s: " + 1); jarvis@iamrj846: $]
System.out.println("The value of j is: " +j);]érVIS@Ta"]r]846:
}
//Static Nested Class
static class NestedTest{
public void changer(){
1=1+10;
j=j+10;
System.out.println("The updated value of i is: " +1);
System.out.println("The updated value of j is: " +);

}
}
}

class Main{
public static void main(String args[]){
Test.display();
Test.NestedTest t = new Test.NestedTest();
t.changer();
}
}

this keyword Iin Java

* There can be a lot of usage of Java this keyword. In Java,
this is a reference variable that refers to the current object.

« Usage of Java this keyword

* Here is given the 6 usage of java this keyword.
1.this can be used to refer current class instance variable.
2.this can be used to invoke current class method (implicitly)
3.this() can be used to invoke current class constructor.

f state w
this

L behaviour J
reference

variable

object

https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3

1) this: to refer current class instance variable

The this keyword can be used to refer current class instance variable. If there is
ambiguity between the instance variables and parameters, this keyword resolves the
problem of ambiguity.

class Student{

int rollno;

String name;

float fee;

Student(int rollno,String name, float fee){

rollno=rollno;

@ null @.e

name=name;
® null 6.6

fee=fee;

}

void display(){System.out.println(rollno+" "+name+" "+fee);}
}

class TestThis1{

public static void main(String args[]){
Student s1=new Student(111,"ankit",5000f);
Student s2=new Student(112,"sumit",6000f);
s1.display();

s2.display();

1

class Student{
int rollno;

String name;

float fee; 111 ankit 5€00.80

Student(int rollno,String name, float fee){ 112 sumit 6006.0
this.rollno=rollno;

this.name=name;

this.fee=fee;

}

void display(){System.out.printin(rollno+" "+name+" "+fee);}

}

class TestThis2{

public static void main(String args[]){
Student s1=new Student(111,"ankit”,5000f);
Student s2=new Student(112,"sumit”,6000f);
s1.display();

s2.display();

B

If local variables(formal arguments) and instance variables are different, there is no need to use this keyword

2) this: to invoke current class method

You may invoke the method of the current class by using the this keyword. If you don't use the this keyword,

compiler automatically adds this keyword while invoking the method. Let's see the example

class A{
void m(){}

void n(){

m(); ’
} compiler

public static void main(String args{]){
new A().n();

N

class A{

void m(){System.out.printin("hello m");}
void n(){

System.out.printIin("hello n");
//m();//same as this.m()

this.m();

}

}
class TestThis4{

public static void main(String args[]){
A a=new A();
a.n();

1}

class A{
void m(){}

void n(){
this.m();

P '
public static void main(String args[]){

new A(}).n();

Hh

hello n

hello m

3) this() : to invoke current class constructor

The this() constructor call can be used to invoke the current class constructor. It is used to reuse the constructor. In

other words, it is used for constructor chaining.

Calling default constructor from parameterized constructor:

class A{

A(){System.out.printin("hello a");}

A(int x){

this();

System.out.printin(x); hello a
} 10

}

class TestThis5{

public static void main(String args[]){
A a=new A(10);

B

Calling parameterized constructor from default constructor:

class A{

A

this(5);
System.out.printIn("hello a");
}

A(int x){
System.out.printin(x);

}

}
class TestThis6{

public static void main(String args[]{
A a=new A();

B

5

hello a

Real usage of this() constructor call

The this() constructor call should be used to reuse the constructor from the constructor. It maintains the chain

between the constructors i.e. it is used for constructor chaining. Let's see the example given below that displays the

actual use of this keyword.
class Student{

int rollno;

String name,course;

float fee;

Student(int rollno,String name,String course){
this.rollno=rollno;

this.name=name;

this.course=course;

}

Student(int rollno,String name,String course,float fee){
this(rollno,name,course);//reusing constructor
this.fee=fee;

}

void display(){System.out.printin(rollno+" "+name+" "+course+" "+fee);}
}

class TestThis7{

public static void main(String args[]){

Student s1=new Student(111,"ankit","java");

Student s2=new Student(112,"sumit","java",6000f);
s1.displav():

111 ankit java ©.8

112 sumit java 6000.0

Student(int rollno,String name,String course){
this.rollno=rollno;

this.name=name;

this.course=course;

}

Student(int rollno,String name,String course, float fee){
this.fee=fee;

this(rollno,name,course);//C.T.Error

}

Java String

In Java, string is basically an object that represents sequence of char values. An array of characters works same as

Java string. For example:

char[] ch={}''a','v.'a''t,'p','0","I",'n",'t'};

String s=new String(ch);
Is same as:
String s="javatpoint";

Java String class provides a lot of methods to perform operations on strings such as compare(), concat(), equals(),

split(), length(), replace(), compareTo(), intern(), substring() etc.

The java.lang.String class implements Serializable, Comparable and CharSequence interfaces.

What is String in Java?

Generally, String is a sequence of characters. But in Java, string is an object that represents a sequence of characters.

The java.lang.String class is used to create a string object.

How to create a string object?
There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal
Java String literal is created by using double quotes. For Example:

String s="welcome";

Each time you create a string literal, the JVM checks the "string constant pool” first. If the string already exists in the
pool, a reference to the pooled instance is returned. If the string doesn't exist in the pool, a new string instance is

created and placed in the pool. For example:

String s1="Welcome";

String s2="Welcome";//It doesn't create a new instance

e« “welcome”

String constant
pool

Heap

In the above example, only one object will be created. Firstly, JVM will not find any string object with the value
"Welcome" in string constant pool that is why it will create a new object. After that it will find the string with the

value "Welcome" in the pool, it will not create a new object but will return the reference to the same instance.

2) By new keyword

String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non-pool) heap memory, and the literal "Welcome™ will

be placed in the string constant pool. The variable s will refer to the object in a heap (non-pool).

Java String Example

StringExample.java

public class StringExample{

public static void main(String args[]){

String s1="java";//creating string by Java string literal
char ch[]={'s"'t,'r,'I"'n"'q’,'s}; java
strings

String s2=new String(ch);//converting char array to string
example

String s3=new String("example");//creating Java string by new keyword
System.out.printin(s1);
System.out.printin(s2);
System.out.printin(s3);

1

Constructors

.String(byte[] byte_arr) - Construct a new String by decoding the byte array. It uses the
platform's default character set for decoding.

Example:

byte[] b_arr = {71, 101, 101, 17, 115},;
String s_byte =new String(b_arr); //Geeks

String (byte[] byte_arr, String char_set_name) - Construct a new String by decoding the
byte array. It uses the char_set name for decoding.
It looks similar to the above constructs and they appear before similar functions but it takes

the String(which contains char set name) as parameter while the above constructor takes
CharSet.

Example:

byte[] b_arr = {71, 11, 1el, 1e7, 115},
String s = new String(b_arr, "US-ASCII"); //Geeks

String (byte[] byte_arr, int start_index, int length) - Construct a new string from the bytes
arraydepending on the start index(Starting location) and length(number of characters
from starting location).

Example:

byte[] b_arr = {71, 11, 1el, 1e7, 115},
String s = new String(b_arr, 1, 3); // eek

String(char[] char_arr) - Allocates a new String from the given Character array
Example:

char char_arr[] = {'G', 'e', 'e', 'k', 's'};

String s = new String(char_arr); //Geeks

String(char[] char_array, int start_index, int count) - Allocates a String from a given
character array but choose count characters from the start index.
Example:

char char_arr[] = {'G', 'e', 'e', 'k', 's'};

String s = new String(char_arr , 1, 3); //eek

String(int[] uni_code_points, int offset, int count) - Allocates a String from a
uni_code arraybut choose countcharacters from the start index.
Example:

int[] uni_code = {71, 101, 101, 187, 115};
String s = new String(uni_code, 1, 3); //eek

Java String class methods

The java.lang.String class provides many useful methods to perform operations on sequence of char values.

No. Method Description

1 char charAt(int index) It returns char value for the particular index
2 int length() It returns string length

3 static String format(String format, Object... args) It returns a formatted string.

4 static String format(Locale |, String format, Object... args) It returns formatted string with given locale.
5 String substring(int beginindex) It returns substring for given begin index.

6 String substring(int beginindex, int endindex) It returns substring for given begin index

and end index.

7 boolean contains(CharSequence s) It returns true or false after matching the

sequence of char value.

8 static String join(CharSequence delimiter, CharSequence... ' It returns a joined string.

elements)

10

11

12

13

14

15

16

17

18

static String join(CharSequence delimiter, Iterable<? extends
CharSequence> elements)

boolean equals(Object another)

boolean isEmpty()
String concat(String str)

String replace(char old, char new)

String replace(CharSequence old, CharSequence new)

static String equalslgnoreCase(String another)

String[] split(String regex)

String[] split(String regex, int limit)

String intern()

It returns a joined string.

It checks the equality of string with the

given object.
It checks if string is empty.
It concatenates the specified string.

It replaces all occurrences of the specified

char value.

It replaces all occurrences of the specified

CharSequence.

It compares another string. It doesn't check

case.
It returns a split string matching regex.

It returns a split string matching regex and

limit.

It returns an interned string.

19

20

21

22

23

24

25

26

27

28

int indexOf(int ch)

int indexOf(int ch, int fromIndex)

int indexOf(String substring)

int indexOf(String substring, int fromIndex)

String toLowerCase()

String toLowerCase(Locale |)

String toUpperCase()

String toUpperCase(Locale [)

String trim()

static String valueOf(int value)

It returns the specified char value index.

It returns the specified char value index

starting with given index.
It returns the specified substring index.

It returns the specified substring index

starting with given index.
It returns a string in lowercase.

It returns a string in lowercase using

specified locale.
It returns a string in uppercase.

It returns a string in uppercase using

specified locale.

It removes beginning and ending spaces of

this string.

It converts given type into string. It is an

overloaded method.

String Length

Methods used to obtain information about an object are known as accessor methods. One
accessor method that you can use with strings is the length() method, which returns the number of

characters contained in the string object.

The following program is an example of length(), method String class.

Example

public class StringDemo

public static void main(String args[]) {

String palindrome = "Dot saw I was Tod";
int len = palindrome.length();
System.out.println("String Length is : " + len);

This will produce the following result -

Qutput

String Length is : 17

Concatenating Strings

The String class includes a method for concatenating two strings -

stringl.concat(string2);

This returns a new string that is string1 with string2 added to it at the end. You can also use the
concat() method with string literals, as in -

"My name is ".concat("Zara");

Strings are more commonly concatenated with the + operator, as in -

"Hello," + " world"” + "I™

which results in -

"Hello, world!"™

String Methods

1. int length(): Returns the number of characters in the String.

"GeeksforGeeks".length(); // returns 13

2. Char charAt(int i): Returns the character at i index.

"GeeksforGeeks".charAt(3); // returns °k’

3. String substring (inti): Return the substring from the it" index character to end.

"GeeksforGeeks".substring(3); // returns “ksforGeeks?”

4. String substring (inti, int j): Returns the substring fromito j-1 index.

"GeeksforGeeks".substring(2, 5); // returns “eks”

5. String concat(String str): Concatenates specified string to the end of this string.

YGeeks”;

YforGeeks”;

String s1
String s2

String output = sl.concat(s2); // returns “GeeksforGeeks”

.intindexOf (String_s): Returns the index within the string of the first occurrence of the

specified string.

String s = ”Learn Share Learn”;

int output = s.indexOf(“Share”); // returns 6

.intindexOf (String_s,.inti): Returns the index within the string of the first occurrence of the

specified string, starting at the specified index.

String s = ”Learn Share Learn”;

int output = s.indexOf("ea",3);// returns 13

.Int lastIndexOf(String_s): Returns the index within the string of the last occurrence of the

specified string.

String s = *”Learn Share Learn”;
int output = s.lastIndexOf("a"); // returns 14

.boolean equals(Object otherObj): Compares this string to the specified object.

Boolean out “Geeks”.equals(“Geeks”); // returns true

Boolean out “Geeks”.equals(“geeks”); // returns false

10. boolean equalslgnoreCase (String_anotherString): Compares string to another string,
ignoring case considerations.

Boolean out= “Geeks”.equalsIgnoreCase(“Geeks™); // returns true

Boolean out = “Geeks”.equalsIgnoreCase(“geeks™); // returns true

11. int compareTo(String anotherString): Compares two string lexicographically.

int out = sl.compareTo(s2); // where sl ans s2 are

// strings to be compared

This returns difference sl-s2. If :
out < @ // sl comes before s2

out

@ // sl and s2 are equal.
out > @ // sl comes after s2.

12. int compareTolgnoreCase(String anotherString): Compares two string lexicographically,
ignoring case considerations.

int out = sl.compareTolghoreCase(s2);
// where sl ans s2 are

// strings to be compared

This returns difference sl-s2. If :
out < @ // sl comes before s2

out = @ // sl and s2 are equal.
out > @ // sl comes after s2.

13.

14,

15.

16.

String toLowerCase(): Converts all the characters in the String to lower case.

“HelLLo™;

String word3 = wordl.tolLowerCase(); // returns “hello"

String wordl

String_toUpperCase(): Converts all the characters in the String to upper case.

String wordl = “HellLo”;
String word2 = wordl.toUpperCase(); // returns “HELLO”

String trim(): Returns the copy of the String, by removing whitespaces at both ends. It does

not affect whitespaces in the middle.

String wordl = “ Learn Share Learn “;

String word2 = wordl.trim(); // returns “Learn Share Learn”

String_replace (char oldChar, char newChar): Returns new string by replacing all

occurrences of oldCharwith newChar.

String s1

“feeksforfeeks”;
. E

String s2 = “feeksforfeeks”.replace(“f’ ,’g’); // returns “geeksgorgeeks”

Note:- s1 is still feeksforfeeks and s2 is geeksgorgeeks

StringBuffer class in Java

StringBuffer is a peer class of String that provides much of the functionality of strings. The
string represents fixed-length, immutable character sequences while StringBuffer represents
growable and writable character sequences. StringBuffer may have characters and substrings
inserted in the middle or appended to the end. It will automatically grow to make room for

such additions and often has more characters preallocated than are actually needed, to allow

room for growth. * java.lang.StringBuffer

Constructors of StringBuffer class

1. StringBuffer(): It reserves room for 16 characters without reallocation

StringBuffer s = new StringBuffer();

2. StringBuffer(int size): It accepts an integer argument that explicitly sets the size of the
buffer.

StringBuffer s = new StringBuffer(20);

3. StringBuffer(String str): It accepts a string argument that sets the initial contents of the

StringBuffer object and reserves room for 16 more characters without reallocation.

StringBuffer s = new StringBuffer("GeeksforGeeks");

Important Constructors of StringBuffer Class

StringBuffer() It creates an empty String buffer with the initial capacity of 16.

StringBuffer(String str) It creates a String buffer with the specified string..

StringBuffer(int capacity) It creates an empty String buffer with the specified capacity as length.

append() Used to add text at the end of the existing text.

length() The length of a StringBuffer can be found by the length() method
capacity() the total allocated capacity can be found by the capacity() method
charAt()

delete() Deletes a sequence of characters from the invoking object

deleteCharAt() Deletes the character at the index specified by loc

ensureCapacity() Ensures capacity is at least equals to the given minimum.

insert() Inserts text at the specified index position

length() Returns length of the string

reverse() Reverse the characters within a StringBuffer object

replace() Replace one set of characters with another set inside a StringBuffer

object |

» ensureCapacity()

It is used to increase the capacity of a StringBuffer object. The new capacity will be set to
either the value we specify or twice the current capacity plus two (i.e. capacity+2), whichever

is larger. Here, capacity specifies the size of the buffer.

Syntax:

void ensureCapacity(int capacity)

1) StringBuffer Class append() Method

The append() method concatenates the given argument with this String.

class StringBufferExample{

public static void main(String args[]{
StringBuffer sb=new StringBuffer("Hello ");
sb.append("Java");//now original string is changed
System.out.printin(sb);//prints Hello Java

}

}

Output:

Hello Java

2) StringBuffer insert() Method

The insert() method inserts the given String with this string at the given position.

StringBufferExample2.java

class StringBufferExample2{

public static void main(String args[]){
StringBuffer sb=new StringBuffer("Hello ");
sb.insert(1,"Java");//now original string is changed

System.out.printin(sb);//prints Hlavaello

}
}

Output:

Hlavaello

3) StringBuffer replace() Method

The replace() method replaces the given String from the specified beginindex and endindex.

StringBufferExample3.java

class StringBufferExample3{

public static void main(String args[]){
StringBuffer sb=new StringBuffer("Hello");
sb.replace(1,3,"Java");

System.out.println(sb);//prints Hlavalo

}
}

Output:

4) StringBuffer delete() Method

The delete() method of the StringBuffer class deletes the String from the specified beginindex to endIndex.

class StringBufferExample4{
public static void main(String args[]){ Output:
StringBuffer sb=new StringBuffer("Hello");
sb.delete(1,3);

System.out.printin(sb);//prints Hlo
}

9) StringBuffer reverse() Method

The reverse() method of the StringBuilder class reverses the current String.

StringBufferExample5.java

class StringBufferExample5{
public static void main(String args[]){
olleH
StringBuffer sb=new StringBuffer("Hello");
sb.reverse();

System.out.printin(sb);//prints olleH

}
}

6) StringBuffer capacity() Method

The capacity() method of the StringBuffer class returns the current capacity of the buffer. The default capacity of the
buffer is 16. If the number of character increases from its current capacity, it increases the capacity by

(oldcapacity*2)+2. For example if your current capacity is 16, it will be (16*2)+2=34.

StringBufferExample6.java

class StringBufferExample6{

public static void main(String args[]){
StringBuffer sb=new StringBuffer();
System.out.printin(sb.capacity());//default 16
sb.append("Hello");
System.out.printin(sb.capacity());//now 16

sb.append("java is my favourite language");
System.out.printin(sb.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2
}

}

7) StringBuffer ensureCapacity() method

The ensureCapacity() method of the StringBuffer class ensures that the given capacity is the minimum to the current
capacity. If it is greater than the current capacity, it increases the capacity by (oldcapacity*2)+2. For example if your

current capacity is 16, it will be (16*2)+2=34.

StringBufferExample7.java

class StringBufferExample7{

public static void main(String args[]){
StringBuffer sb=new StringBuffer();
System.out.printin(sb.capacity());//default 16
sb.append("Hello");

Output:

System.out.printin(sb.capacity());//now 16

sb.append(“java is my favourite language");
System.out.printin(sb.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2
sb.ensureCapacity(10);//now no change
System.out.printin(sb.capacity());//now 34

sb.ensureCapacity(50);//now (34*2)+2

System.out.println(sb.capacity());//now 70

}
}

