
ECE/EEE 225

OBJECT ORIENTED

PROGRAMMING THROUGH JAVA

UNIT – I:

OOPS CONCEPTS AND JAVA

PROGRAMMING

History of c, c++, java

• “C is a programming language which born at ‘AT &
T’s Bell Laboratories’ of USA in 1972. It was written
by Dennis Ritchie.

• purpose: to design the UNIX operating system.

• The committee formed by the American National
Standards Institute (ANSI) approved a version of C
in 1989 which is known as ANSI C.

• ANSI C was then approved by the International
Standards Organization (ISO) in 1990.

• It was named C because its predecessor was called
B which was developed by Ken Thompson of Bell
Labs.

• “C++ was written by Bjarne Stroustrup at Bell Labs
during 1983-1985.

• C++ is an extension of C. It is superset of C.

• Bjarne Stroustrup added feature of OOP (Object
Oriented Programming) in C and formed what he
called ‘C with Classes’.

• Java started to be developed in 1991 by James
Gosling from Sun Microsystems and his team.

• The original name of Java is Oak. But it had to
change its original name because Oak had been
used by another programming language.

• Java is viewed as a programming language to
design applications for the Internet.

Software

• Software is a set of instructions or programs used to
operate computer and to execute specific tasks.

• Two main categories of software:

• System software: to run computer and to provide platform
for running applications.

• Application software: to run user applications.

• Programming languages: It is defined as a set of keywords
and syntaxes used to perform a specific task.

• Two common types of low-level programming languages
are assembly language and machine language.

• Low level programming languages:machine friendly,difficult
to understand.

https://techterms.com/definition/assembly_language
https://techterms.com/definition/machine_language

• Machine language, or machine code, is the lowest
level of computer languages.

• Assembly language is one step closer to a high-level
language than machine language. It includes
commands such as MOV (move), ADD (add), and SUB
(subtract).

• Assembly language can be converted to the machine
language using an assembler.

• High level languages: the code is not recognized
directly by the CPU. Instead, it must be compiled into
a low-level language.

• High level programming languages:closed to human
languages.Programmer friendly,easy to
understand,debug and maintain

https://techterms.com/definition/assembler
https://techterms.com/definition/cpu
https://techterms.com/definition/compile

Programming paradigms

 • Programming paradigms are a way to

classify programming languages based on their

features.

• Monolithic programming

• Procedural programming

• Structured programming

• Object Oriented Programming

Monolithic programming
The Monolithic programming paradigm is the oldest. It
has the following characteristics.

• In this programming paradigm, the whole program is
written in a single block.

• It uses all data as global data which leads to data
insecurity.

• There are no flow control statements like if, switch, for,
and while statements in this paradigm.

• We use the goto statement to jump from one
statement to another statement.

• There is no concept of data types.

• An example of a Monolithic programming paradigm
is Assembly language.

• Ex: BASIC,ASSEMBLY

Procedural Programming Paradigm

 The procedure-oriented programming paradigm is the
advanced paradigm of the monolithic paradigm. It has
the following characteristics.
– This paradigm introduces a modular programming concept

where a larger program is divided into smaller modules.

– It provides the concept of code reusability.

– It is introduced with the concept of data types.

– The control of the program is transferred using unsafe goto
statement.

– In this paradigm, all the data is used as global data which
leads to data insecurity.

– Procedural programming languages are known as top-down
languages

– Examples of a procedural-oriented programming paradigm
is ALGOL, FORTRON,COBOL, PL/I and Ada.

Structured Programming Paradigm

 The structured-oriented programming paradigm is the advanced paradigm
of a procedural-oriented paradigm. It has the following characteristics.

– This paradigm introduces a modular programming concept where a
larger program is divided into smaller modules.

– It provides the concept of code reusability.

– It is introduced with the concept of data types.

– It provides flow control statements that provide more control to the
user.

– It follows all the concepts of procedural-oriented programming
paradigm but the data is defined as global data, and also local data to
the individual modules.

– User defined data types are introduced.

– In this paradigm, functions may transform data from one form to
another.

– Procedural programming languages are known as top-down
languages

– Examples of structured-oriented programming paradigm is C, visual
basic, PASCAL, etc.

Structured Programming Paradigm

Object-oriented Programming Paradigm

 The object-oriented programming paradigm is the most popular. It has the
following characteristics.

• In this paradigm, the whole program is created on the concept of objects.

• In this paradigm, objects may communicate with each other through
function.

• This paradigm mainly focuses on data rather than functionality.

• In this paradigm, programs are divided into what are known as objects.

• It follows the bottom-up flow of execution.

• It introduces concepts like data abstraction, inheritance, and overloading
of functions and operators overloading.

• In this paradigm, data is hidden and cannot be accessed by an external
function.

• It has the concept of friend functions and virtual functions.

• In this paradigm, everything belongs to objects.

• Examples of object-oriented programming paradigm : C++, Java, C#,
Python, etc.

OOPs concepts

• Object-oriented programming uses objects in

programming.

• The main aim of OOP is to bind together the

data and the functions that operate on them

so that no other part of the code can access

this data except that function.

• So that security will be provided to the data.

https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#objects

Class

• The class is a user-defined data type which defines its
properties(attributes or variables) and its behaviour
(functions or methods).

• A class is grouping of objects having identical
properties, common behavior and shared
relationship.

• It supports a template for creating objects which bind
code and data.

• The class does not occupy any memory space.

• The class is the only logical representation of the
data.

• For example, Human being is a class. The body parts
of a human being are its properties, and the actions
performed by the body parts are known as functions.

Object

• An object is the instance of the class. An object is a run-

time entity.

• An object can represent a person, place or any other item.

• An object can operate on both data members and

member functions.

• When a class is defined, no memory is allocated but when

it is instantiated (i.e. an object is created) memory is

allocated.

• Encapsulation: wrapping the data members and

member functions in a single unit. It binds the data

within a class, and no outside method can access

the data. If the data member is private, then the

member function can only access the data.

• This characteristic of data hiding provides greater

program security and avoids unintended data

corruption.

• Abstraction: Data abstraction refers to providing

only essential information about the data to the

outside world, hiding the background details or

implementation.

https://searchsqlserver.techtarget.com/definition/data-hiding
https://searchsqlserver.techtarget.com/definition/data-corruption
https://searchsqlserver.techtarget.com/definition/data-corruption

• Consider a real-life example of encapsulation, in a company, there are

different sections like the accounts section, finance section, sales section

etc. The finance section handles all the financial transactions and keeps

records of all the data related to finance. Similarly, the sales section

handles all the sales-related activities and keeps records of all the sales.

Now there may arise a situation when for some reason an official from

the finance section needs all the data about sales in a particular month.

In this case, he is not allowed to directly access the data of the sales

section. He will first have to contact some other officer in the sales

section and then request him to give the particular data. This is what

encapsulation is. Here the data of the sales section and the employees

that can manipulate them are wrapped under a single name “sales

section”.
• Consider a real-life example of a man driving a car. The man only knows

that pressing the accelerators will increase the speed of the car or

applying brakes will stop the car but he does not know about how on

pressing accelerator the speed is actually increasing, he does not know

about the inner mechanism of the car or the implementation of

accelerator, brakes etc in the car. This is what abstraction is.

• Polymorphism: Polymorphism means multiple

forms. It means having more than one function

with the same function name but with different

functionalities.

• Ex: A person at the same time can have different

characteristic. Like a man at the same time is a

father, an employee. So the same person posses

different behaviour in different situations. This is

called polymorphism.

• Operator overloading(only in C++)

• Function overloading

• Inheritance: The capability of a class to derive
properties and characteristics from another class
is called Inheritance. Inheritance is one of the
most important features of Object-Oriented
Programming.

– Sub Class: The class that inherits properties from
another class is called Sub class or Derived Class.

– Super Class: The class whose properties are inherited
by sub class is called Base Class or Super class.

– Reusability: Inheritance supports the concept of
“reusability”, i.e. when we want to create a new class
and there is already a class that includes some of the
code that we want, we can derive our new class from
the existing class. By doing this, we are reusing the
fields and methods of the existing class.

Java Programming
History of java:

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java
language project in June 1991. The small team of sun engineers called Green
Team.

2) Initially designed for small, embedded systems in electronic appliances like
set-top boxes.

3) Firstly, it was called "Greentalk" by James Gosling, and the file extension
was .gt.

4) After that, it was called Oak and was developed as a part of the Green
project.

5) Why Oak? Oak is a symbol of strength and chosen as a national tree of
many countries like the U.S.A., France, Germany, Romania, etc.

6) In 1995, Oak was renamed as "Java" because it was already a trademark
by Oak Technologies.

Java is an island of Indonesia where the first coffee was produced (called java
coffee). It is a kind of espresso bean. Java name was chosen by James
Gosling.

https://www.javatpoint.com/james-gosling-father-of-java
https://www.javatpoint.com/embedded-system-tutorial

The principles for creating Java programming were

"Simple, Robust, Portable, Platform-independent,

Secured, High Performance, Multithreaded,

Architecture Neutral, Object-Oriented, Interpreted,

and Dynamic".

initiated this project to develop a language for digital

devices such as set-top boxes, televisions, etc.

However, it was suited for internet programming.

Currently, Java is used in internet programming,

mobile devices, games, e-business solutions, etc.

Features of Java

• The features of Java are also known as

java buzzwords.

• Simple:
– Java is very easy to learn, and its syntax is simple, clean and easy to

understand. According to Sun, Java language is a simple

programming language because:

– Java syntax is based on C,C++ (so easier for programmers to learn it

after C++).

– Java has removed many complicated and rarely-used features, for

example, explicit pointers, operator overloading, etc.

– There is no need to remove unreferenced objects because there is an

Automatic Garbage Collection in Java.

• Object-oriented
– Java is an object-oriented programming language. Everything in Java

is an object. Object-oriented means we organize our software as a

combination of different types of objects that incorporates both data

and behavior.

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/java-oops-concepts

• Platform Independent:
– A platform is the hardware or software environment in which a

program runs.

– Java is a write once, run anywhere language.

– Java code can be run on multiple platforms, for example, Windows,

Linux, Sun Solaris, Mac/OS, etc.

– Java code is compiled and converted into bytecode.

– This code is not understood by any platform, but only a virtual

platform called the Java Virtual Machine.

– This Virtual Machine resides in the RAM of your operating system.

When the Virtual Machine is fed with this bytecode, it identifies the

platform it is working on and converts the bytecode into the native

machine code.

• Secure:
– Java program always runs in Java runtime environment with almost

null interaction with system OS, hence it is more secure.

– Java has no explicit pointer & Java Programs run inside a virtual

machine

– With Java, we can develop virus-free systems.

• Robust:
– Robust means strong.

– It uses strong memory management.

– There is a lack of pointers that avoids security problems.

– There is automatic garbage collection in java which runs on the Java

Virtual Machine.

– There are exception handling and the type checking mechanism in Java.

So it provides compile time error checking and runtime checking.

• Architecture-neutral:
– Compiler generates bytecodes, which have nothing to do with a

particular computer architecture, hence a Java program is easy to

intrepret on any machine.

• Distributed:
– Java is distributed because it facilitates users to create distributed

applications in Java.

– RMI and EJB are used for creating distributed applications.

– This feature of Java makes us able to access files by calling the methods

from any machine on the internet by using TCP/IP protocols.

• Multi-threaded:
– We can write Java programs that deal with many tasks at once by

defining multiple threads.

– Benefit of multithreading is that it utilizes same memory and other
resources to execute multiple threads at the same time.

– Ex:While typing, grammatical errors are checked along.

• Dynamic:
– Java is a dynamic language.

– It supports dynamic loading of classes ie., classes are loaded on
demand.

– Java supports automatic memory management (garbage collection).

• High Performance:
– Java architecture is designed to reduce overheads during run-time.

– The concept of multithreading in Java also increases the execution speed
of Java programs.

– Java is an interpreted language, so it will never be as fast as a compiled
language like C or C++.

– Java enables high performance with the use of just-in-time compiler.

• Interpreted:
– Once the java program is created, it is compiled by Java Compiler. This

compiled code (Byte code) can be executed using Java Interpreter.

Java Comments

 • Comments are mainly used to help programmers to understand
the code.

• proper use of comments makes maintenance easier and finding
bugs easily.

• Comments are ignored by the compiler while compiling a code.
These are optional.

• In Java there are three types of comments:
1. Single – line comments.

2. Multi – line comments.

3. Documentation comments.

• Single-line comments start with two forward slashes (//). we
use // for short comments.

Ex: single-line comment before a line of code:
// This is a comment

System.out.println("Hello World");

Ex: single-line comment at the end of a line of code:

System.out.println("Hello World"); // This is a

comment

• Multi-line comments start with /* and ends

with */. We use /* */ for longer comments.

• Any text between /* and */ will be ignored by

Java.

Ex:

/* The code below will print the words Hello World to the

screen, and it is amazing */

System.out.println("Hello World");

• Documentation Comments:

This type of comments are used generally when writing code for a
project/software package, since it helps to generate a
documentation page for reference, which can be used for getting
information about methods present, its parameters, etc.

The documentation comment is used to create documentation API.
To create documentation API, you need to use javadoc tool.

Ex:
/** The Calculator class provides methods to get addition and subtractio
n of given 2 numbers.*/

public class Calculator {

/** The add() method returns addition of given numbers.*/

public static int add(int a, int b){return a+b;}

/** The sub() method returns subtraction of given numbers.*/

public static int sub(int a, int b){return a-b;}

}

Create Documentation API by javadoc tool: javadoc Calculator.java

https://www.javatpoint.com/creating-api-document
https://www.javatpoint.com/creating-api-document
https://www.javatpoint.com/creating-api-document

Java tokens

• A token is the smallest element of a program that

is meaningful to the compiler.

• The Java compiler breaks the line of code into text

(words) is called Java tokens.

In the above code snippet, public, class, Demo, {, static, void, main, (, String, args, [,],),

System, ., out, println, javatpoint, etc. are the Java tokens. The Java compiler translates

these tokens into Java bytecode. Further, these bytecodes are executed inside the

interpreted Java environment.

https://www.javatpoint.com/java-bytecode
https://www.javatpoint.com/java-bytecode
https://www.javatpoint.com/java-bytecode

• Java tokens can be classified as follows:

– Keywords

– Identifiers

– Constants

– Special Symbols/separators

– Operators

– Comments

• Keywords:

– Keywords are pre-defined or reserved words in a programming
language.

– Each keyword is meant to perform a specific function in a
program.

– keywords are referred names for a compiler, they can’t be used
as variable names because by doing so, we are trying to assign a
new meaning to the keyword which is not allowed.

– Keywords are always written in lower case.

Java language supports following keywords:

• Identifier:

– Identifiers are used to name a variable, constant, function,
class, and array.

– Identifiers usually defined by the user.

– The identifier name must be different from the reserved
keywords.

– There are some rules to declare identifiers are:

• Identifiers must begin with a letter, dollar sign or underscore.

• Apart from the first character, an identifier can have any
combination of characters.

• Identifiers in Java are case sensitive.

• Java Identifiers can be of any length.

• Identifier name cannot contain white spaces.

• Any identifier name must not begin with a digit but can contain
digits within.

• Most importantly, keywords can’t be used as identifiers in Java.

• Examples of valid and invalid identifiers :

• $myvariable //correct

• _variable //correct

• Variable //correct

• &variable //error

• 23identifier //error

• switch //error

• Literals:

– literal is a notation that represents a fixed value

(constant) in the source code.

– It can be categorized as an integer literal, string literal,

Boolean literal, etc.

– Java provides five types of literals are as follows:

• All values that we write in a program are literals.

• Each literal belongs to one of java’s 4 primitive
data types:int,double,boolean,char.

– integer literals: represents countable and discrete
quantities.

• decimal/octal/hexa-decimal

– double Literals: represents measurable quantities like
real numbers, fractions and numbers with decimal
places.

• E or e

– boolean Literals: represent for calculating truth values.

– char literal: It is a type of text literal. It represents one
character inside single quotes.

– String Literal:It is a type of text literal.Enclosed in
double quotes.

Escape Sequences

• Each escape sequence is translated into a

character that prints in some special way.

Separators
• The separators in Java is also known as punctuators.

• have special meaning known to Java compiler and cannot be used for
any other purpose.

• separator <= ; | , | . | (|) | { | } | [|]

• Square Brackets []: It is used to define array elements. A pair of square
brackets represents the single-dimensional array, two pairs of square
brackets represent the two-dimensional array.

• Parentheses (): It is used to call the functions and parsing the
parameters.

• Curly Braces {}: The curly braces denote the starting and ending of a
code block.

• Comma (,): It is used to separate two values, statements, and
parameters.

• Assignment Operator (=): It is used to assign a variable and constant.

• Semicolon (;): It is the symbol that can be found at end of the
statements. It separates the two statements.

• Period (.): It separates the package name form the sub-packages and
class. It also separates a variable or method from a reference variable.

Operators
• Operators are the special symbols that tells the

compiler to perform a special operation.

• Java provides different types of operators that can be
classified according to the functionality they provide.

• There are eight types of operators in Java, are as
follows:
– Arithmetic Operators

– Assignment Operators

– Relational Operators

– Unary Operators

– Logical Operators

– Ternary Operators

– Bitwise Operators

– Shift Operators

Data types
• Data types are for identifying and assessing the

type of data. Java is rich in data types which

allows the programmer to select the appropriate

type needed to build variables of an application.

Constants
• A constant is a variable whose value cannot change

once it has been assigned.

• To define a variable as a constant, we just need to

add the keyword “final” in front of the variable
declaration.

• Syntax:

 final float pi = 3.14f;

Java will throw errors at compile time itself if we

change the value of constant variable.

Expressions
• A Java expression consists

of variables, operators, literals, and method calls.

• Examples:
int score;

 score = 90;// Expression

Double a = 2.2, b = 3.4, result;

result = a + b - 3.4;//Expression

if (number1 == number2) //Expression

System.out.println("Number 1 is larger than number 2");

• Expression evaluation in Java is based upon the
following concepts:

– Operator precedence

– Associativity rules

– Type promotion rules

Operator Precedence

• Operator precedence determines the order in

which the operators in an expression are

evaluated.

• All the operators in Java are divided into several

groups and are assigned a precedence level.

• Ex: 10 – 2 * 5

• Based on the operator precedence chart, * has

higher precedence than +. So, 2* 5 is evaluated

first which gives 10 and then 10 – 10 is evaluated

which gives 0.

Associativity Rules

 • If the expression contains two or more operators
from the same group then such ambiguities are solved
using the associativity rules.

• When an expression contains operators from the
same group, associativity rules are applied to
determine which operation should be performed
first.

• Ex: 10-6+2

• The operators + and – both belong to the same group.
So, we have to check the associativity rules for
evaluating the above expression. Associativity rule for
+ and – group is left-to-right i.e, evaluate the
expression from left to right. So, 10-6=4 and 4+2= 6.

Type conversion

 • Converting a value from one type to another type
(data type) is known as type conversion.

• Type conversion is of two types based on how the
conversion is performed:

– Implicit conversion (automatic conversion or coercion or
widening conversion)

– Explicit conversion (type casting or narrowing conversion.)

• Implicit Conversion:

– Implicit casting is performed to convert a lower data type
into a higher data type. It is also known as automatic type
promotion in Java.

– In this case both datatypes should be compatible with each
other.

• Explicit Conversion:

– Converting a higher datatype to a lower datatype is

known as narrowing. In this case the

casting/conversion is not done automatically, you need

to convert explicitly using the cast operator “()” .
– In this case both datatypes need not be compatible

with each other.

• Syntax for type casting:

 (destination-type) value

• in java the numeric data types are compatible

with each other but no automatic conversion is

supported from numeric type to char or boolean.

Also, char and boolean are not compatible with

each other.

• Ex for implicit type conversion:
int myInt = 9; o/p: 9

double myDouble = myInt; // implicit convertion int to double o/p:9.0

int i = 100; 100

long l = i; 100

float f = l; 100.0

• Ex for explicit type conversion:

• double myDouble = 9.78;

• int myInt = (int) myDouble; // Manual casting:

double to int 9

• float b = 3.0;

• int a = (int) b; // converting a float value into inte

ger 3

• double d = 100.04; 100.04

• long l = (long)d; 100

• int i = (int)l; 100

Type Promotion in Expressions

 • In addition to assignment statements, type conversion can
occur in expressions also.

• An expression is a collection of variables, values, operators
and method calls which evaluate to a single value.

• Type promotion rules of Java for expressions are listed
below:
– All char, short and byte values are automatically promoted

to int type.

– If at least one operand in an expression is a long type, then the
entire expression will be promoted to long.

– If at least one operand in an expression is a float type, then the
entire expression will be promoted to float.

– If at least one operand in an expression is a double type, then
the entire expression will be promoted to double.

– Boolean values cannot be converted to another type.

In the above program the expression is (f * b) + (i / c) – (d * s). In the first sub expression

(f * b), as one operand is float, the result of the expression will be a float. In the second

sub expression (i / c), char type will be promoted to int and the result of the expression

will be an int. In the third sub expression (d * s), as one operand is double, the result of

the expression is a double.

Type casting in expressions

• While evaluating expressions, the result is automatically updated to
larger data type of the operand.

• But if we store that result in any smaller data type it generates
compile time error, due to which we need to type cast the result.

EX:

float x = 3.5, y = 4.5; // the size of float variable is 4 byte.

int area; // the size of the int variable is 4 bytes.

area = (int) x * y; // after conversion the product converts into int

Ex:

byte b = 50;

 b = (byte)(b * 2); //type casting int to byte

The differences between implicit casting and explicit
casting in Java are as follows:

1. Implicit type casting is done internally by java compiler
whereas, explicit type casting is done by the programmer.
Java compiler does not perform it automatically.

2. In explicit casting, cast operator is needed whereas, no
need for any operator in the case of implicit type casting.

3. If we perform explicit type casting in a program, we can
lose information or data but in the case of implicit type
casting, there is no loss of data.

4. Accuracy is not maintained in explicit type casting
whereas, there is no issue of accuracy in implicit type
conversion.

5. Implicit type conversion is safe but explicit type casting
is not safe.

Control statements
• if(condition){ //code to be executed }

• if(condition){ //code if condition is true }

 else{ //code if condition is false }

• if(condition1){ //code to be executed if condition1 is true }

else if(condition2){ //code to be executed if condition2 is true }

 else if(condition3){ //code to be executed if condition3 is true }

 ...

 else{ //code to be executed if all the conditions are false }

• if(condition)

 {

 //code to be executed

 if(condition){ //code to be executed }

 }

switch(expression){

case value1:

 //code to be executed;

 break; //optional

case value2:

 //code to be executed;

 break; //optional

......

default:

 code to be executed if all cases are not match

ed;

}

for(initialization;condition;incr/decr){

//statement or code to be executed

}

int arr[]={12,23,44,56,78};

 //Printing array using for-each loop

 for(int i:arr){

 System.out.println(i);

 }

 int i=1;

 while(i<=10){

 System.out.println(i);

 i++;

 }

 int i=1;

 do{

 System.out.println(i);

 i++;

 }while(i<=10);

Java Labeled For Loop:

We can have a name of each Java for loop. To do so, we use label before the for loop. It is

useful if we have nested for loop so that we can break/continue specific for loop.

Usually, break and continue keywords breaks/continues the innermost for loop only.

 aa:

 for(int i=1;i<=3;i++){

 bb:

 for(int j=1;j<=3;j++){

 if(i==2&&j==2){

 break aa;

 }

 System.out.println(i+" "+j);

 }

 }

Infinite for loop

for(;;){

//code to be executed

}

Infinite while loop

 while(true){

 System.out.println("infinitive while loop");

 }
do{

//code to be executed

}while(true);

Break:

 for(int i=1;i<=10;i++){

 if(i==5){

 //breaking the loop

 break;

 }

 System.out.println(i);

 }

Continue:

for(int i=1;i<=10;i++){

 if(i==5){

 //using continue statement

 continue;//it will skip the rest statement

 }

 System.out.println(i);

 }

}

aa:

 for(int i=1;i<=3;i++){

 bb:

 for(int j=1;j<=3;j++){

 if(i==2&&j==2){

 //using continue with label

 continue aa;

 }

 System.out.println(i+" "+j);

 }

First Java Program | Hello World Example

 • Requirements to run the java program:

– Install the JDK, download the JDK from

oracle.com and install it.

– Set path of the jdk/bin directory.

– Create the java program

– Compile and run the java program

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

How to set Permanent Path of JDK in Windows

Now your permanent path is set. You can now execute any program of java from any drive.

Create the java program

To write the simple program, you need to open notepad

by start menu -> All Programs -> Accessories -> notepad.

write the simple program of java in notepad and saved it as

Simple.java.

To compile and run this program, you need to open the

command prompt by start menu -> All Programs ->

Accessories -> command prompt.

To compile and run the above program, go to your
current directory first. my current directory is
c:\new. Write here:

To compile: javac Simple.java

When we compile Java program using javac tool,
java compiler converts the source code into byte
code.

To execute: java Simple

Output: Hello Java

Parameters used in First Java Program

 class Simple

{

 public static void main(String args[])

 {

 System.out.println("Hello Java");

 }

}

• class keyword is used to declare a class in java.

• public keyword is an access modifier which

represents visibility. It means it is visible to all.

• static is a keyword. If we declare any method as static,
it is known as the static method. The core advantage
of the static method is that there is no need to create
an object to invoke the static method. The main
method is executed by the JVM, so it doesn't require
to create an object to invoke the main method. So it
saves memory.

• void is the return type of the method. It means it
doesn't return any value.

• main represents the starting point of the program.

• String[] args is used for command line argument.

• System.out.println() is used to print statement. Here,
System is a class, out is the object of PrintStream
class, println() is the method of PrintStream class.

Java Virtual Machine

• Java Virtual Machine (JVM) is an engine that provides

runtime environment to drive the Java Code or

applications. It converts Java bytecode into machines

language. However, Java compiler produces code for a

Virtual Machine known as Java Virtual Machine.

Loading and executing class files in the JVM

 • JVM's main role is running Java applications. In
order to run Java applications, the JVM depends
on the Java class loader and a Java execution
engine.

• The Java class loader in the JVM

– Everything in Java is a class, and all Java applications
are built from classes.

– An application could consist of one class or thousands.

– The Java class loader is the part of the JVM that loads
classes into memory and makes them available for
execution.

– Every Java Virtual Machine includes a class loader.

https://www.javaworld.com/article/2077260/learn-java/learn-java-the-basics-of-java-class-loaders.html

• The execution engine in the JVM

– The execution engine is essential to the running JVM.

– Once the class loader has done its work of loading

classes, the JVM begins executing the code in each

class.

– The execution engine is the JVM component that

handles this function.

– Executing code involves managing access to system

resources. The JVM execution engine stands between

the running program--with its demands for file,

network and memory resources--and the operating

system, which supplies those resources.

Console input and output

• We have 3 ways for reading user's input from

console(text entry and display device) in Java:

1. Reading User's Input using Scanner class

2. Reading User's Input using Console class

3. Reading User's Input using BufferedReader class

• We have 2 ways for printing output to console in

Java:

1. write to console with System.out.println

2. write to console with printf()

Reading User's Input using Scanner class

 • Scanner class can be used to read input from the

user in the command line. available since Java 1.5.

Syntax:

BigInteger class is used for mathematical operation which involves very big integer

calculations that are outside the limit of all available primitive data types.

For example factorial of 100 contains 158 digits

Reading User's Input using Console class

 • The Console class was introduced in Java 1.6, and
it has been becoming a preferred way for reading
user’s input from the command line.

• it can be used for reading password-like input
without echoing the characters entered by the
user.

Reading User's Input using BufferedReader class

 • By wrapping the System.in (standard input

stream) in an InputStreamReader which is

wrapped in a BufferedReader, we can read input

from the user in the command line.

write to console with System.out.println

formatting output

• System.out.printf() method can be used to print

formatted output in java.

– printf() comes from the C programming language and

stands for print formatted.

– printf() uses java.util.Formatter

– System.out.printf(String format, String... arguments);

– the method expects a format and a vararg arguments.

Format Specifiers

 • With printf(), you can print values such as numbers,

Strings, dates, etc. To let the method know what exactly

you're trying to print, you need to provide a format

specifier for each of the values.

• String provides format() method and it can be

used to print formatted output in java.

– The java string format() method returns a formatted

string using the given locale, specified format

string and arguments.

– public static String format(String form, Object… args)

– form– format of the output string

args– It specifies the number of arguments for the

format string.It may be zero or more.

• Syntax:

Concatenation of Strings using format() method

Left padding using format() method

Arrays in Java
• An array is a group of like-typed variables that are referred to by a

common name. Arrays in Java work differently than they do in

C/C++.

• important points about Java arrays:

– In Java all arrays are dynamically allocated.(discussed below)

– Since arrays are objects in Java, we can find their length using

the object property length.

– A Java array variable can also be declared like other variables

with [] after the data type.

– The variables in the array are ordered and each have an index

beginning from 0.

– Java array can be also be used as a static field, a local variable or

a method parameter.

– The size of an array must be specified by an int or short value

and not long.

–
–

https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/marker-interface-java/
https://www.geeksforgeeks.org/serialization-in-java/

Creating, Initializing one dimensional array

• An array declaration has two components: the type and

the name.

• the element type for the array determines what type of

data the array will hold.

• Like an array of integers, we can also create an array of

other primitive data types like char, float, double, etc. or

user-defined data types (objects of a class).

• The general form of a one-dimensional array declaration

is

Creating Arrays

 • You can create an array by using the new operator
with the following syntax −

dataType[] arrayRefVar;

arrayRefVar = new dataType[arraySize];

• The above statement does two things −

– It creates an array using new dataType[arraySize].

– It assigns the reference of the newly created array to the
variable arrayRefVar.

• Declaring an array variable, creating an array, and
assigning the reference of the array to the variable
can be combined in one statement:

dataType[] arrayRefVar = new dataType[arraySize];

dataType[] arrayRefVar = {value0, value1, ..., valuek};

• The array elements are accessed through

the index. Array indices are 0-based; that is, they

start from 0 to arrayRefVar.length-1.

• Ex: double[] myList = new double[10];

For each loop is used to traverse the complete array sequentially without using an index

variable.

The syntax of the for-each loop is given below:

Default values of the array

• After the array is declared, (before to initialize)

array will be filled every array index with default

values in memory locations.

• the default value is 0 for numeric

type, null for String and false for boolean type.

class Array_Default{

public static void main(String args[]){

String[] names=new String[5];//array is declared, but not initilized

System.out.println(names[0]);

System.out.println(names[1]);

System.out.println(names[2]);

System.out.println(names[3]);

System.out.println(names[4]);

}

}

Output:

• null

• null

• null

• null

• null

Passing Array to a Method in Java

 • We can pass the java array to method so that we

can reuse the same logic on any array.

Output: 3

Returning Array from the Method

 • We can also return an array from the method in

Java.

Anonymous Array in Java

 • Java supports the feature of an anonymous array,

so you don't need to declare the array while

passing an array to the method.

Multidimensional Array in Java

 • In multidimentional arrays, data is stored in row

and column based index (also known as matrix

form).

Jagged Array in Java

 • If we are creating odd number of columns in a 2D

array, it is known as a jagged array. In other words,

it is an array of arrays with different number of

columns.

Copying Arrays

• list2 = list1;

• This statement does not copy the contents of the

array referenced by list1 to list2, but merely

copies the reference value from list1 to list2.

• After this statement, list1 and list2 reference to

the same array.

• The array previously referenced by list2 is no longer referenced; it becomes garbage,

which will be automatically collected by the Java Virtual Machine.

• You can use assignment statements to copy primitive data type variables, but not arrays.

• Assigning one array variable to another variable actually copies one reference to another

and makes both variables point to the same memory location.

• We use a loop or arraycopy() to copy arrays.

Output: caffein

Addition of 2 Matrices

Multiplication of 2 Matrices

Reading array using Scanner class
import java.util.*;

class OnedimensionalScanner

{

 public static void main(String args[])

 {

int len;

Scanner sc=new Scanner(System.in);

System.out.println("Enter Array length : ");

len=sc.nextInt();

int a[]=new int[len];//declaration

System.out.print("Enter " + len + " Element to Store in Array :\n");

 for(int i=0; i<len; i++)

 {

 a[i] = sc.nextInt();

 }

 System.out.print("Elements in Array are :\n");

 for(int i=0; i<len; i++)

 {

 System.out.print(a[i] + " ");

 }

 }

}

Class and object

• Java is an object-oriented programming language.

• Everything in Java is associated with classes and

objects.

• A class is a user defined blueprint or prototype

from which objects are created.

• Class represents the set of properties or methods

that are common to all objects of one type.

• Example: a car is an object. The car has attributes,

such as weight and color, and methods, such as

drive and brake.

Creating a class in java

• We can create a class in Java using the class

keyword.

• Class contains variables and methods.

• Syntax:

 class classname

 {

 variable declaration(class attributes);

 method declaration;

 }

Create a Class:

Create an Object (for accessing the class attributes) :

In Java, an object is created from a class.

In Java, the new keyword is used to create new objects.

Syntax:

 ClassName object = new ClassName();

When we create an instance of the class by using the new keyword, it allocates

memory (heap) for the newly created object and also returns the reference of

that object.

You can access attributes by creating an object of the class, and by
using the dot syntax (.)

Output: 5

Modify Attributes

Output: 0

Output: 40

Output: 25

If you don't want to override existing values, declare the attribute as final.

The final keyword is useful when you want a variable to always store the same value,
like PI (3.14159...).

Multiple objects

Output: 5

 5

If you create multiple objects of one class, you can change the attribute

values in one object, without affecting the attribute values in the other.

Multiple Attributes

 • We can specify as many attributes as we want in a

class.

Using Multiple Classes

 • You can also create an object of a class and access

it in another class.

• This is often used for better organization of

classes. one class has all the attributes and

methods, while the other class holds

the main() method.

• the name of the java file should match the class

name.

Save the above program with Second.java because the main method is available at

Second class.

Class methods
public class Example1

{

void show()

{

System.out.println("Welcome to ANU");

}

public static void main(String[] args)

{

//creating an object using new keyword

Example1 obj = new Example1();

//invoking method using the object

obj.show();

}

}

Output: Welcome to ANU

initialize object

• There are 3 ways to initialize object in Java.

– By reference variable

– By method

– By constructor

Initialization through reference

 • Initializing an object means storing data into the

object.

Initialization through method

 In this, we create methods for initialising the objects.

class Employee{

 int id;

 String name;

 float salary;

 void insert(int i, String n, float s) {

 id=i;

 name=n;

 salary=s;

 }

 void display(){System.out.println(id+" "+name+" "+salary);}

}

public class TestEmployee {

public static void main(String[] args) {

 Employee e1=new Employee();

 Employee e2=new Employee();

 Employee e3=new Employee();

 e1.insert(101,"ajeet",45000);

 e2.insert(102,"irfan",25000);

 e3.insert(103,"nakul",55000);

 e1.display();

 e2.display();

 e3.display();

}

}

Constructors in java
• A constructor in Java is a special method that is used

to initializes the newly created object before it is used.

• The constructor is called when an object of a class is
created.

• It can be used to set initial values for object attributes.

• It has the same name as its class and is syntactically
similar to a method.

• All classes have constructors, whether you define one
or not, because Java automatically provides a default
constructor that initializes all member variables to
zero.

• However, once you define your own constructor, the
default constructor is no longer used.

Java Default Constructor

 • A constructor is called "Default Constructor" when

it doesn't have any parameter.

• The default constructor is used to provide the

default values to the object like 0, null, etc.,

depending on the type.

Java Parameterized Constructor

 • A constructor which has a specific number of

parameters is called a parameterized constructor.

• The parameterized constructor is used to provide

different values to distinct objects.

Constructor Overloading - Multiple

Constructors for a Java Class

 • In Java, a constructor is just like a method but

without return type. It can also be overloaded like

Java methods.

• Constructor overloading in Java is a technique of

having more than one constructor with different

parameter lists.

• They are arranged in a way that each constructor

performs a different task.

• They are differentiated by the compiler by the

number of parameters in the list and their types.

https://www.javatpoint.com/method-overloading-in-java

class Test{

 static int i = 10;

 static int j;

 static{

 System.out.println("Initializing the Static Variable using Static Block ...");

 j = i * 5;

 }

}

 class Main{

 public static void main(String args[]){

 System.out.println("Value of i is: " + Test.i);

 System.out.println("Value of j is: " + Test.j);

 }

}

class Test{

 static int i = 10;

 static class NestedTest{

 public void printer(){

 System.out.println("The value of i is: " + i);

 }

 }

}

 class Main{

 public static void main(String args[]){

 Test.NestedTest t = new Test.NestedTest();

 t.printer();

 }

}

Let’s consider a final example that uses all the types of static members that were discussed above.
class Test{

 //Static variable

 static int i;

 static int j;

 //Multiple Static Blocks

 static{

 System.out.println("Initializing the value of i");

 i = 20;

 }

 static{

 System.out.println("Initializing the value of j");

 j = i * 30;

 }

 //Static Method

 public static void display(){

 System.out.println("The value of i is: " + i);

 System.out.println("The value of j is: " + j);

 }

 //Static Nested Class

 static class NestedTest{

 public void changer(){

 i = i + 10;

 j = j + 10;

 System.out.println("The updated value of i is: " + i);

 System.out.println("The updated value of j is: " + j);

 }

 }

}

 class Main{

 public static void main(String args[]){

 Test.display();

 Test.NestedTest t = new Test.NestedTest();

 t.changer();

 }

}

this keyword in Java
 • There can be a lot of usage of Java this keyword. In Java,

this is a reference variable that refers to the current object.

• Usage of Java this keyword

• Here is given the 6 usage of java this keyword.

1. this can be used to refer current class instance variable.

2. this can be used to invoke current class method (implicitly)

3. this() can be used to invoke current class constructor.

https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this1
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this2
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3
https://www.javatpoint.com/this3

1) this: to refer current class instance variable

The this keyword can be used to refer current class instance variable. If there is

ambiguity between the instance variables and parameters, this keyword resolves the

problem of ambiguity.

